首页> 美国卫生研究院文献>other >A long-memory model of motor learning in the saccadic system: A regime-switching approach
【2h】

A long-memory model of motor learning in the saccadic system: A regime-switching approach

机译:在扫视系统运动学习的长期记忆模型:一个区域转变方式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Maintenance of movement accuracy relies on motor learning, by which prior errors guide future behavior. One aspect of this learning process involves the accurate generation of predictions of movement outcome. These predictions can, for example, drive anticipatory movements during a predictive-saccade task. Predictive saccades are rapid eye movements made to anticipated future targets based on error information from prior movements. This predictive process exhibits long-memory (fractal) behavior, as suggested by inter-trial fluctuations. Here, we model this learning process using a regime-switching approach, which avoids the computational complexities associated with true long-memory processes. The resulting model demonstrates two fundamental characteristics. First, long-memory behavior can be mimicked by a system possessing no true long-term memory, producing model outputs consistent with human-subjects performance. In contrast, the popular two-state model, which is frequently used in motor learning, cannot replicate these findings. Second, our model suggests that apparent long-term memory arises from the trade-off between correcting for the most recent movement error and maintaining consistent long-term behavior. Thus, the model surprisingly predicts that stronger long-memory behavior correlates to faster learning during adaptation (in which systematic errors drive large behavioral changes); greater apparent long-term memory indicates more effective incorporation of error from the cumulative history across trials.
机译:保持运动准确性依赖于运动学习,通过运动学习,先前的错误会指导未来的行为。这种学习过程的一方面涉及运动结果预测的准确生成。这些预测可以例如在预测性扫视任务期间推动预期的运动。预测扫视是根据先前运动的错误信息对预期的未来目标进行的快速眼动。正如审判间的波动所暗示的那样,这种预测过程表现出长记忆(分形)行为。在这里,我们使用一种政权转换方法对这种学习过程进行建模,从而避免了与真正的长内存过程相关的计算复杂性。结果模型展示了两个基本特征。首先,可以通过不具有真正的长期记忆的系统来模仿长时间记忆的行为,从而产生与人体性能一致的模型输出。相反,在运动学习中经常使用的流行的两种状态模型无法复制这些发现。其次,我们的模型表明,明显的长期记忆源于纠正最新的运动误差与保持一致的长期行为之间的权衡。因此,该模型出乎意料地预测到,更强的长记忆行为与适应过程中的更快学习相关(其中系统性错误推动了较大的行为变化);长期表观记忆力越高,表明跨试验累积历史记录中错误的纳入越有效。

著录项

  • 期刊名称 other
  • 作者

    Aaron L. Wong; Mark Shelhamer;

  • 作者单位
  • 年(卷),期 -1(41),8
  • 年度 -1
  • 页码 1613–1624
  • 总页数 20
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号