首页> 美国卫生研究院文献>other >Computerized Identification of Airway Wall in CT Examinations Using a 3D Active Surface Evolution Approach
【2h】

Computerized Identification of Airway Wall in CT Examinations Using a 3D Active Surface Evolution Approach

机译:使用三维活性表面演化方法计算机化气道壁的鉴定CT检查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Airway diseases (e.g., asthma, emphysema, and chronic bronchitis) are extremely common worldwide. Any morphological variations (abnormalities) of airways may physically change airflow and ultimately affect the ability of the lungs in gas exchange. In this study, we describe a novel algorithm aimed to automatically identify airway walls depicted on CT images. The underlying idea is to place a three-dimensional (3D) surface model within airway regions and thereafter allow this model to evolve (deform) under predefined external and internal forces automatically to the location where these forces reach a state of balance. By taking advantage of the geometric and the density characteristics of airway walls, the evolution procedure is performed in a distance gradient field and ultimately stops at regions with the highest contrast. The performance of this scheme was quantitatively evaluated from several perspectives. First, we assessed the accuracy of the developed scheme using a dedicated lung phantom in airway wall estimation and compared it with the traditional full-width at half maximum (FWHM) method. The phantom study shows that the developed scheme has an error ranging from 0.04 mm to 0.36 mm, which is much smaller than the FWHM method with an error ranging from 0.16 mm to 0.84 mm. Second, we compared the results obtained by the developed scheme with those manually delineated by an experienced (>30 years) radiologist on clinical chest CT examinations, showing a mean difference of 0.084 mm. In particular, the sensitivity of the scheme to different reconstruction kernels was evaluated on real chest CT examinations. For the ‘lung’, ‘bone’ and ‘standard’ kernels, the average airway wall thicknesses computed by the developed scheme were 1.302 mm, 1.333 mm and 1.339 mm, respectively. Our preliminary experiments showed that the scheme had a reasonable accuracy in airway wall estimation. For a clinical chest CT examination, it took around 4 minutes for this scheme to identify the inner and outer airway walls on a modern PC.
机译:气道疾病(例如哮喘,肺气肿和慢性支气管炎)在世界范围内非常普遍。气道的任何形态变化(异常)都可能会物理改变气流,并最终影响肺部气体交换的能力。在这项研究中,我们描述了一种新颖的算法,旨在自动识别CT图像上描绘的气道壁。基本思想是在气道区域内放置一个三维(3D)表面模型,然后允许该模型在预定义的外力和内力作用下自动演化(变形)到这些力达到平衡状态的位置。通过利用气道壁的几何特性和密度特性,在距离梯度场中执行演变过程,并最终在对比度最高的区域停止。从多个角度对该方案的性能进行了定量评估。首先,我们在气道壁估计中使用专用的肺部幻影评估了开发方案的准确性,并将其与传统的半峰全宽(FWHM)方法进行了比较。幻像研究表明,所开发的方案的误差范围为0.04 mm至0.36 mm,比FWHM方法小得多,其误差范围为0.16 mm至0.84 mm。其次,我们将通过开发的方案获得的结果与经验丰富(> 30年)的放射线医师在临床胸部CT检查中手动描绘的结果进行了比较,发现平均差为0.084 mm。特别是,在真实的胸部CT检查中评估了该方案对不同重建内核的敏感性。对于“肺”,“骨”和“标准”玉米粒,通过开发的方案计算出的平均气道壁厚分别为1.302毫米,1.333毫米和1.339毫米。我们的初步实验表明,该方案在气道壁估计中具有合理的准确性。对于临床胸部CT检查,此方案花费了大约4分钟的时间才能在现代PC上识别出内气道壁和外气道壁。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号