首页> 美国卫生研究院文献>other >Integrating Clonal Selection and Deterministic Sampling for Efficient Associative Classification
【2h】

Integrating Clonal Selection and Deterministic Sampling for Efficient Associative Classification

机译:整合克隆选择和确定性抽样高效的关联分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Traditional Associative Classification (AC) algorithms typically search for all possible association rules to find a representative subset of those rules. Since the search space of such rules may grow exponentially as the support threshold decreases, the rules discovery process can be computationally expensive. One effective way to tackle this problem is to directly find a set of high-stakes association rules that potentially builds a highly accurate classifier. This paper introduces AC-CS, an AC algorithm that integrates the clonal selection of the immune system along with deterministic data sampling. Upon picking a representative sample of the original data, it proceeds in an evolutionary fashion to populate only rules that are likely to yield good classification accuracy. Empirical results on several real datasets show that the approach generates dramatically less rules than traditional AC algorithms. In addition, the proposed approach is significantly more efficient than traditional AC algorithms while achieving a competitive accuracy.
机译:传统的关联分类(AC)算法通常会搜索所有可能的关联规则,以找到这些规则的代表子集。由于此类规则的搜索空间可能会随着支持阈值的降低而呈指数增长,因此规则发现过程的计算量可能很大。解决此问题的一种有效方法是直接找到一组可能建立一个高度准确的分类器的高风险关联规则。本文介绍了AC-CS,这是一种将免疫系统的克隆选择与确定性数据采样相结合的AC算法。在选择原始数据的代表性样本后,它将以进化的方式进行,仅填充可能产生良好分类精度的规则。对几个真实数据集的经验结果表明,该方法生成的规则比传统的AC算法少得多。此外,所提出的方法在实现竞争准确性的同时,比传统的AC算法效率更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号