首页> 美国卫生研究院文献>other >Unsupervised Learning of Functional Network Dynamics in Resting State fMRI
【2h】

Unsupervised Learning of Functional Network Dynamics in Resting State fMRI

机译:休息状态下的功能网络动态的无监督学习FMRI

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Research in recent years has provided some evidence of temporal non-stationarity of functional connectivity in resting state fMRI. In this paper, we present a novel methodology that can decode connectivity dynamics into a temporal sequence of hidden network “states” for each subject, using a Hidden Markov Modeling (HMM) framework. Each state is characterized by a unique covariance matrix or whole-brain network. Our model generates these covariance matrices from a common but unknown set of sparse basis networks, which capture the range of functional activity co-variations of regions of interest (ROIs). Distinct hidden states arise due to a variation in the strengths of these basis networks. Thus, our generative model combines a HMM framework with sparse basis learning of positive definite matrices. Results on simulated fMRI data show that our method can effectively recover underlying basis networks as well as hidden states. We apply this method on a normative dataset of resting state fMRI scans. Results indicate that the functional activity of a subject at any point during the scan is composed of combinations of overlapping task-positiveegative pairs of networks as revealed by our basis. Distinct hidden temporal states are produced due to a different set of basis networks dominating the covariance pattern in each state.
机译:近年来的研究提供了一些证据,表明静止状态功能磁共振成像中功能连接的时间不稳定。在本文中,我们提出了一种新颖的方法,该方法可以使用隐马尔可夫建模(HMM)框架将连接动态转换为每个主题的隐藏网络“状态”的时间序列。每个状态的特征在于唯一的协方差矩阵或全脑网络。我们的模型从一组常见但未知的稀疏基础网络生成这些协方差矩阵,这些网络捕获了感兴趣区域(ROI)的功能活动协变的范围。由于这些基础网络强度的变化,出现了不同的隐藏状态。因此,我们的生成模型将HMM框架与正定矩阵的稀疏基础学习相结合。模拟fMRI数据的结果表明,我们的方法可以有效地恢复基础网络以及隐藏状态。我们将这种方法应用于静止状态功能磁共振成像扫描的规范数据集。结果表明,在扫描过程中,对象在任何时候的功能活动均由重叠的任务阳性/阴性对网络组合构成,这是我们的基础所揭示的。由于在每个状态中主导协方差模式的基础网络的不同集合,因此产生了不同的隐藏时间状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号