首页> 美国卫生研究院文献>other >Joint confidence region estimation of L-moment ratios with an extension to right censored data
【2h】

Joint confidence region estimation of L-moment ratios with an extension to right censored data

机译:L-矩比比率的联合置信区估计延伸到右审查数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

L-moments, defined as specific linear combinations of expectations of order statistics, have been advocated by Hosking [] and others in the literature as meaningful replacements to that of classic moments in a wide variety of applications. One particular use of L-moments is to classify distributions based on the so-called L-skewness and L-kurtosis measures and given by an L-moment ratio diagram. This method parallels the classic moment-based plot of skewness and kurtosis corresponding to the Pearson system of distributions. In general, these methods have been more descriptive in nature and failed to consider the corresponding variation and covariance of the point estimators. In this note, we propose two procedures to estimate the 100(1 − α)% joint confidence region of L-skewness and L-kurtosis, given both complete and censored data. The procedures are derived based on asymptotic normality of L-moment estimators or through a novel empirical characteristic function (c.f.) approach. Simulation results are provided for comparing the performance of these procedures in terms of their respective coverage probabilities. The new and novel c.f.-based confidence region provided superior coverage probability as compared to the standard bootstrap procedure across all parameter settings. The proposed methods are illustrated via an application to a complete Buffalo snow fall data set and to a censored breast cancer data set, respectively.
机译:Hosking []等人在文献中提倡将L矩定义为对阶跃统计量的期望的特定线性组合,作为在各种应用中经典矩的有意义的替代。 L矩的一种特殊用途是根据所谓的L偏度和L峰度度量对分布进行分类,并通过L矩比图给出。该方法与经典的基于矩的偏度和峰度图相对应,该图对应于Pearson分布系统。通常,这些方法本质上更具描述性,并且没有考虑点估计量的相应变化和协方差。在此注释中,我们给出了两种程序,以给出完整和经审查的数据来估计L-偏度和L-峰度的100(1-α)%联合置信区域。该程序是基于L矩估计量的渐近正态性或通过新颖的经验特征函数(c.f.)方法得出的。提供了仿真结果,用于根据这些程序各自的覆盖率比较这些程序的性能。与所有参数设置中的标准自举程序相比,基于c.f.的新颖新颖置信区提供了更高的覆盖率。分别通过对完整的Buffalo降雪数据集和经审查的乳腺癌数据集的应用说明了所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号