首页> 美国卫生研究院文献>other >An Image Analysis Algorithm for Malaria Parasite Stage Classification and Viability Quantification
【2h】

An Image Analysis Algorithm for Malaria Parasite Stage Classification and Viability Quantification

机译:疟疾寄生虫阶段分类和生存力量化的图像分析算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With more than 40% of the world’s population at risk, 200–300 million infections each year, and an estimated 1.2 million deaths annually, malaria remains one of the most important public health problems of mankind today. With the propensity of malaria parasites to rapidly develop resistance to newly developed therapies, and the recent failures of artemisinin-based drugs in Southeast Asia, there is an urgent need for new antimalarial compounds with novel mechanisms of action to be developed against multidrug resistant malaria. We present here a novel image analysis algorithm for the quantitative detection and classification of Plasmodium lifecycle stages in culture as well as discriminating between viable and dead parasites in drug-treated samples. This new algorithm reliably estimates the number of red blood cells (isolated or clustered) per fluorescence image field, and accurately identifies parasitized erythrocytes on the basis of high intensity DAPI-stained parasite nuclei spots and Mitotracker-stained mitochondrial in viable parasites. We validated the performance of the algorithm by manual counting of the infected and non-infected red blood cells in multiple image fields, and the quantitative analyses of the different parasite stages (early rings, rings, trophozoites, schizonts) at various time-point post-merozoite invasion, in tightly synchronized cultures. Additionally, the developed algorithm provided parasitological effective concentration 50 (EC50) values for both chloroquine and artemisinin, that were similar to known growth inhibitory EC50 values for these compounds as determined using conventional SYBR Green I and lactate dehydrogenase-based assays.
机译:全世界有40%的人口处于危险之中,每年感染2亿至3亿,每年估计有120万人死亡,疟疾仍然是当今人类最重要的公共卫生问题之一。由于疟原虫倾向于迅速发展出对新开发疗法的抵抗力,并且青蒿素类药物最近在东南亚失败,因此迫切需要开发出具有新型作用机制的新型抗疟疾化合物,以对抗多重耐药性疟疾。我们在这里提出了一种新颖的图像分析算法,用于定量检测和鉴定培养物中疟原虫生命周期的各个阶段,并区分药物处理过的样品中的活寄生虫和死寄生虫。这种新算法可以可靠地估计每个荧光图像场中红细胞的数量(分离的或聚类的),并根据高强度DAPI染色的寄生虫细胞核斑点和Mitotracker染色的线粒体在活寄生虫的基础上准确识别被寄生的红细胞。我们通过手动计数多个图像区域中感染和未感染的红细胞,并对不同时间点后不同寄生虫阶段(早期环,环,滋养体,裂殖体)进行定量分析,验证了算法的性能在紧密同步的文化中,裂殖子入侵。此外,开发的算法还提供了氯喹和青蒿素的寄生虫有效浓度50(EC50)值,类似于使用常规SYBR Green I和基于乳酸脱氢酶的测定法确定的这些化合物的已知生长抑制EC50值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号