首页> 美国卫生研究院文献>other >Using High Angular Resolution Diffusion Imaging Data to Discriminate Cortical Regions
【2h】

Using High Angular Resolution Diffusion Imaging Data to Discriminate Cortical Regions

机译:使用高角度分辨率扩散成像数据来区分皮质区域

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Brodmann’s 100–year–old summary map has been widely used for cortical localization in neuroscience. There is a pressing need to update this map using non–invasive, high–resolution and reproducible data, in a way that captures individual variability. We demonstrate here that standard HARDI data has sufficiently diverse directional variation among grey matter regions to inform parcellation into distinct functional regions, and that this variation is reproducible across scans. This characterization of the signal variation as non–random and reproducible is the critical condition for successful cortical parcellation using HARDI data. This paper is a first step towards an individual cortex–wide map of grey matter microstructure, The gray/white matter and pial boundaries were identified on the high–resolution structural MRI images. Two HARDI data sets were collected from each individual and aligned with the corresponding structural image. At each vertex point on the surface tessellation, the diffusion–weighted signal was extracted from each image in the HARDI data set at a point, half way between gray/white matter and pial boundaries. We then derived several features of the HARDI profile with respect to the local cortical normal direction, as well as several fully orientationally invariant features. These features were taken as a fingerprint of the underlying grey matter tissue, and used to distinguish separate cortical areas. A support–vector machine classifier, trained on three distinct areas in repeat 1 achieved 80–82% correct classification of the same three areas in the unseen data from repeat 2 in three volunteers. Though gray matter anisotropy has been mostly overlooked hitherto, this approach may eventually form the foundation of a new cortical parcellation method in living humans. Our approach allows for further studies on the consistency of HARDI based parcellation across subjects and comparison with independent microstructural measures such as ex–vivo histology.
机译:布罗德曼(Brodmann)具有100年历史的摘要地图已广泛用于神经科学中的皮质定位。迫切需要使用非侵入性,高分辨率和可重现数据来更新此地图,以捕获个体可变性的方式。在这里,我们证明了标准的HARDI数据在灰质区域之间具有足够多样的方向变化,以告知将细胞分为不同的功能区域,并且这种变化在整个扫描过程中都是可重现的。将信号变化表征为非随机且可重现的特征是使用HARDI数据成功进行皮层剥离的关键条件。本文是迈向单个皮质范围的灰质微结构图的第一步。在高分辨率的MRI结构图像上识别出灰/白质和脑膜边界。从每个人收集了两个HARDI数据集,并与相应的结构图像对齐。在曲面细分的每个顶点上,从HARDI数据集中的每个图像中的一个点提取扩散加权信号,该点位于灰/白质和部分边界之间的一半。然后,我们得出相对于局部皮质法线方向的HARDI轮廓的几个特征,以及几个完全定向不变的特征。这些特征被用作下层灰质组织的指纹,并用于区分单独的皮质区域。在重复1的三个不同区域训练的支持向量机分类器,在来自三个志愿者的重复2的未见数据中,对相同的三个区域进行了80-82%的正确分类。尽管迄今为止,灰质各向异性一直被大多数人所忽视,但是这种方法最终可能会为活着的人类形成一种新的皮层剥离方法的基础。我们的方法允许进一步研究跨受试者的基于HARDI的碎片的一致性,并与独立的微观结构测量(例如离体组织学)进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号