首页> 美国卫生研究院文献>other >Bayesian Non-Parametric Hierarchical Modeling for Multiple Membership Data in Grouped Attendance Interventions
【2h】

Bayesian Non-Parametric Hierarchical Modeling for Multiple Membership Data in Grouped Attendance Interventions

机译:分组出勤干预中多个成员数据的贝叶斯非参数层次建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We develop a dependent Dirichlet process (DDP) model for repeated measures multiple membership (MM) data. This data structure arises in studies under which an intervention is delivered to each client through a sequence of elements which overlap with those of other clients on different occasions. Our interest concentrates on study designs for which the overlaps of sequences occur for clients who receive an intervention in a shared or grouped fashion whose memberships may change over multiple treatment events. Our motivating application focuses on evaluation of the effectiveness of a group therapy intervention with treatment delivered through a sequence of cognitive behavioral therapy session blocks, called modules. An open-enrollment protocol permits entry of clients at the beginning of any new module in a manner that may produce unique MM sequences across clients. We begin with a model that composes an addition of client and multiple membership module random effect terms, which are assumed independent. Our MM DDP model relaxes the assumption of conditionally independent client and module random effects by specifying a collection of random distributions for the client effect parameters that are indexed by the unique set of module attendances. We demonstrate how this construction facilitates examining heterogeneity in the relative effectiveness of group therapy modules over repeated measurement occasions.
机译:我们为重复测量多个成员(MM)数据开发了一个相关的Dirichlet过程(DDP)模型。这种数据结构出现在研究中,在该研究中,通过一系列在不同场合与其他客户的要素重叠的要素,将干预措施交付给每个客户。我们的兴趣集中在研究设计上,对于那些接受以共享或分组方式进行干预且其成员资格可能在多个治疗事件中发生变化的客户,发生序列重叠的研究设计。我们的激励应用程序侧重于评估集体疗法干预的有效性,该干预通过一系列认知行为疗法会话模块(称为模块)进行治疗。开放注册协议允许以任何可能在客户端之间产生唯一MM序列的方式在任何新模块的开头输入客户端。我们从一个模型开始,该模型由假定独立的客户和多个成员模块随机效应项组成。我们的MM DDP模型通过指定一组由唯一的模块出勤率索引的客户端效果参数的随机分布集合,放宽了条件独立的客户端和模块随机效果的假设。我们演示了这种构造如何在重复测量的情况下促进检查组治疗模块相对有效性中的异质性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号