首页> 美国卫生研究院文献>other >Determining Functional Units of Tongue Motion via Graph-regularized Sparse Non-negative Matrix Factorization
【2h】

Determining Functional Units of Tongue Motion via Graph-regularized Sparse Non-negative Matrix Factorization

机译:通过图正则化稀疏非负矩阵分解确定舌运动的功能单位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tongue motion during speech and swallowing involves synergies of locally deforming regions, or functional units. Motion clustering during tongue motion can be used to reveal the tongue’s intrinsic functional organization. A novel matrix factorization and clustering method for tissues tracked using tagged magnetic resonance imaging (tMRI) is presented. Functional units are estimated using a graph-regularized sparse non-negative matrix factorization framework, learning latent building blocks and the corresponding weighting map from motion features derived from tissue displacements. Spectral clustering using the weighting map is then performed to determine the coherent regions—i.e., functional units—defined by the tongue motion. Two-dimensional image data is used to verify that the proposed algorithm clusters the different types of images accurately. Three-dimensional tMRI data from five subjects carrying out simple non-speech/speech tasks are analyzed to show how the proposed approach defines a subject/task-specific functional parcellation of the tongue in localized regions.
机译:言语和吞咽过程中的舌头运动涉及局部变形区域或功能单元的协同作用。舌头运动过程中的运动聚类可以用来揭示舌头的内在功能组织。提出了一种使用标记磁共振成像(tMRI)跟踪的组织的新型矩阵分解和聚类方法。使用图规则化的稀疏非负矩阵分解框架,从组织位移得出的运动特征中学习潜在构造块和相应的权重图,从而估算功能单元。然后执行使用加权图的谱聚类以确定由舌头运动定义的相干区域(即,功能单元)。使用二维图像数据来验证所提出的算法能够准确地对不同类型的图像进行聚类。分析了来自五个执行简单非语音/语音任务的对象的三维tMRI数据,以显示所提出的方法如何在局部区域定义舌头的特定于对象/任务的功能性分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号