首页> 美国卫生研究院文献>other >Low-Rank to the Rescue – Atlas-based Analyses in the Presence of Pathologies
【2h】

Low-Rank to the Rescue – Atlas-based Analyses in the Presence of Pathologies

机译:救援的低级别–病理状态下基于Atlas的分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Low-rank image decomposition has the potential to address a broad range of challenges that routinely occur in clinical practice. Its novelty and utility in the context of atlas-based analysis stems from its ability to handle images containing large pathologies and large deformations. Potential applications include atlas-based tissue segmentation and unbiased atlas building from data containing pathologies. In this paper we present atlas-based tissue segmentation of MRI from patients with large pathologies. Specifically, a healthy brain atlas is registered with the low-rank components from the input MRIs, the low-rank components are then re-computed based on those registrations, and the process is then iteratively repeated. Preliminary evaluations are conducted using the brain tumor segmentation challenge data (BRATS ’12).
机译:低等级图像分解有可能解决临床实践中经常发生的各种挑战。它在基于图集的分析中的新颖性和实用性源于它处理包含大病理和大变形的图像的能力。潜在的应用包括基于图集的组织分割和从包含病理数据的无偏图集。在本文中,我们介绍了来自具有大病变的患者的MRI的基于图集的组织分割。具体而言,将健康的大脑图谱与来自输入MRI的低级成分进行配准,然后根据这些配准重新计算低级成分,然后重复该过程。使用脑肿瘤分割挑战数据(BRATS ’12)进行了初步评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号