首页> 美国卫生研究院文献>other >Distributions in the Error Space: Goal-Directed Movements Described in Time and State-Space Representations
【2h】

Distributions in the Error Space: Goal-Directed Movements Described in Time and State-Space Representations

机译:错误空间中的分布:时间和状态空间表示形式中描述的目标导向运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Manipulation of error feedback has been of great interest to recent studies in motor control and rehabilitation. Typically, motor adaptation is shown as a change in performance with a single scalar metric for each trial, yet such an approach might overlook details about how error evolves through the movement. We believe that statistical distributions of movement error through the extent of the trajectory can reveal unique patterns of adaption and possibly reveal clues to how the motor system processes information about error. This paper describes different possible ordinate domains, focusing on representations in time and state-space, used to quantify reaching errors. We hypothesized that the domain with the lowest amount of variability would lead to a predictive model of reaching error with the highest accuracy. Here we showed that errors represented in a time domain demonstrate the least variance and allow for the highest predictive model of reaching errors. These predictive models will give rise to more specialized methods of robotic feedback and improve previous techniques of error augmentation.
机译:错误反馈的操纵已引起运动控制和康复方面的最新研究。通常,对于每个试验,运动适应都显示为具有单个标量度量的性能变化,但是这种方法可能会忽略有关误差如何通过运动演变的细节。我们相信,通过轨迹范围的运动误差的统计分布可以揭示适应的独特模式,并可能揭示有关电机系统如何处理有关误差的信息的线索。本文介绍了不同的可能纵坐标域,重点关注时间和状态空间中的表示形式,用于量化到达误差。我们假设可变性最低的域将导致预测误差最高的预测模型。在这里,我们表明时域中表示的误差表现出最小的方差,并允许达到误差的最高预测模型。这些预测模型将产生更专业的机器人反馈方法,并改善以前的错误增加技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号