首页> 美国卫生研究院文献>other >A Hybrid Bayesian Hierarchical Model Combining Cohort and Case-control Studies for Meta-analysis of Diagnostic Tests: Accounting for Partial Verification Bias
【2h】

A Hybrid Bayesian Hierarchical Model Combining Cohort and Case-control Studies for Meta-analysis of Diagnostic Tests: Accounting for Partial Verification Bias

机译:结合队列和案例控制研究的混合贝叶斯分层模型对诊断测试进行荟萃分析:考虑部分验证偏差

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To account for between-study heterogeneity in meta-analysis of diagnostic accuracy studies, bivariate random effects models have been recommended to jointly model the sensitivities and specificities. As study design and population vary, the definition of disease status or severity could differ across studies. Consequently, sensitivity and specificity may be correlated with disease prevalence. To account for this dependence, a trivariate random effects model had been proposed. However, the proposed approach can only include cohort studies with information estimating study-specific disease prevalence. In addition, some diagnostic accuracy studies only select a subset of samples to be verified by the reference test. It is known that ignoring unverified subjects may lead to partial verification bias in the estimation of prevalence, sensitivities and specificities in a single study. However, the impact of this bias on a meta-analysis has not been investigated. In this paper, we propose a novel hybrid Bayesian hierarchical model combining cohort and case-control studies and correcting partial verification bias at the same time. We investigate the performance of the proposed methods through a set of simulation studies. Two case studies on assessing the diagnostic accuracy of gadolinium-enhanced magnetic resonance imaging in detecting lymph node metastases and of adrenal fluorine-18 fluorodeoxyglucose positron emission tomography in characterizing adrenal masses are presented.
机译:为了在诊断准确性研究的荟萃分析中考虑研究之间的异质性,建议使用双变量随机效应模型共同对敏感性和特异性进行建模。随着研究设计和人群的变化,疾病状态或严重程度的定义在各个研究中可能会有所不同。因此,敏感性和特异性可能与疾病患病率相关。为了解决这种依赖性,已经提出了三变量随机效应模型。但是,建议的方法只能包括队列研究,并提供估计特定研究疾病患病率的信息。此外,某些诊断准确性研究仅选择要通过参考测试验证的样本子集。众所周知,在单个研究中,忽略未验证的受试者可能会导致部分患病率,敏感性和特异性的估计偏倚。但是,尚未研究这种偏见对荟萃分析的影响。在本文中,我们提出了一种新的混合贝叶斯分层模型,该模型结合了队列研究和病例对照研究,同时纠正了部分验证偏差。我们通过一组模拟研究来研究所提出方法的性能。提出了两个评估评估ado增强磁共振成像检测淋巴结转移和肾上腺氟18氟脱氧葡萄糖正电子发射断层扫描表征肾上腺肿块的诊断准确性的案例研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号