首页> 美国卫生研究院文献>other >A Novel Adaptive Cuckoo Search for Optimal Query Plan Generation
【2h】

A Novel Adaptive Cuckoo Search for Optimal Query Plan Generation

机译:一种用于优化查询计划生成的新型自适应杜鹃搜索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The emergence of multiple web pages day by day leads to the development of the semantic web technology. A World Wide Web Consortium (W3C) standard for storing semantic web data is the resource description framework (RDF). To enhance the efficiency in the execution time for querying large RDF graphs, the evolving metaheuristic algorithms become an alternate to the traditional query optimization methods. This paper focuses on the problem of query optimization of semantic web data. An efficient algorithm called adaptive Cuckoo search (ACS) for querying and generating optimal query plan for large RDF graphs is designed in this research. Experiments were conducted on different datasets with varying number of predicates. The experimental results have exposed that the proposed approach has provided significant results in terms of query execution time. The extent to which the algorithm is efficient is tested and the results are documented.
机译:越来越多的网页的出现导致语义网技术的发展。用于存储语义Web数据的万维网联盟(W3C)标准是资源描述框架(RDF)。为了提高查询大型RDF图的执行时间效率,不断发展的元启发式算法已成为传统查询优化方法的替代方法。本文重点研究语义Web数据的查询优化问题。本研究设计了一种有效的算法,称为自适应杜鹃搜索(ACS),用于查询和生成大型RDF图的最佳查询计划。在具有不同数量谓词的不同数据集上进行了实验。实验结果表明,该方法在查询执行时间方面已提供了可观的结果。测试了该算法有效的程度,并记录了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号