首页> 美国卫生研究院文献>other >The Circuit Architecture of Whole Brains at the Mesoscopic Scale
【2h】

The Circuit Architecture of Whole Brains at the Mesoscopic Scale

机译:介观尺度的全脑电路结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vertebrate brains of even moderate size are composed of astronomically large numbers of neurons and show a great degree of individual variability at the microscopic scale. This variation is presumably the result of phenotypic plasticity and individual experience. At a larger scale, however, relatively stable species-typical spatial patterns are observed in neuronal architecture, e.g., the spatial distributions of somata and axonal projection patterns, probably the result of a genetically encoded developmental program. The mesoscopic scale of analysis of brain architecture is the transitional point between a microscopic scale where individual variation is prominent and the macroscopic level where a stable, species-typical neural architecture is observed. The empirical existence of this scale, implicit in neuroanatomical atlases, combined with advances in computational resources, makes studying the circuit architecture of entire brains a practical task. A methodology has previously been proposed that employs a shotgun-like grid-based approach to systematically cover entire brain volumes with injections of neuronal tracers. This methodology is being employed to obtain mesoscale circuit maps in mouse and should be applicable to other vertebrate taxa. The resulting large data sets raise issues of data representation, analysis, and interpretation, which must be resolved. Even for data representation the challenges are nontrivial: the conventional approach using regional connectivity matrices fails to capture the collateral branching patterns of projection neurons. Future success of this promising research enterprise depends on the integration of previous neuroanatomical knowledge, partly through the development of suitable computational tools that encapsulate such expertise.
机译:即使大小适中的脊椎动物大脑,在天文数字上都由大量神经元组成,并且在微观尺度上显示出很大的个体变异性。这种变化大概是表型可塑性和个人经验的结果。然而,在较大的规模上,在神经元结构中观察到相对稳定的物种典型空间模式,例如,躯体和轴突投影模式的空间分布,这可能是遗传编码的发育程序的结果。脑结构分析的介观尺度是个体差异突出的微观尺度与观察到稳定的物种典型神经结构的宏观尺度之间的过渡点。这种规模的经验存在于神经解剖学地图集中,结合计算资源的进步,使得研究整个大脑的电路结构成为一项实际的任务。先前已经提出了一种方法,该方法采用类似a弹枪的基于网格的方法,通过注射神经元示踪剂来系统地覆盖整个大脑体积。该方法已用于获取小鼠中尺度电路图,并且应适用于其他脊椎动物类群。产生的大型数据集引起了数据表示,分析和解释的问题,必须解决这些问题。即使对于数据表示,挑战也不是简单的:使用区域连通性矩阵的常规方法无法捕获投影神经元的附带分支模式。这个有前途的研究企业的未来成功取决于先前神经解剖学知识的整合,部分是通过封装这些专业知识的合适计算工具的开发。

著录项

  • 期刊名称 other
  • 作者

    Partha P. Mitra;

  • 作者单位
  • 年(卷),期 -1(83),6
  • 年度 -1
  • 页码 1273–1283
  • 总页数 20
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号