首页> 美国卫生研究院文献>other >Efficient Transmission of Subthreshold Signals in Complex Networks of Spiking Neurons
【2h】

Efficient Transmission of Subthreshold Signals in Complex Networks of Spiking Neurons

机译:亚阈值信号在尖峰神经元复杂网络中的有效传输

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances—that naturally balances the network with excitatory and inhibitory synapses—and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.
机译:我们研究了在存在不同水平的基础噪声的情况下,在现实的神经介质中对弱阈值信号的有效传输和处理。假设最大的突触电导的Hebbian权重(自然地使网络与兴奋性突触和抑制性突触平衡),并考虑影响这些电导的短期突触可塑性,我们发现系统中存在不同的动态阶段。这包括神经元群体保持同步的记忆阶段,不同神经元同步群体之间出现过渡的振荡阶段和异步或嘈杂阶段。当对每个神经元施加微弱的刺激输入时,增加了介质中的噪声水平,我们发现这种刺激在过渡点和临界点附近有效传递,这些临界点将不同相位分隔开来,以定义系统中不同程度的随机性。我们证明了这种引人入胜的现象非常健壮,因为它发生在不同的情况下,包括几种类型的突触可塑性,不同类型和数量的存储模式以及多种网络拓扑,即稀释网络和复杂拓扑,例如无标度和小型网络。世界网络。我们得出的结论是,该现象在不同的​​现实情况下的鲁棒性(包括尖峰神经元,短期突触可塑性和复杂的网络拓扑结构)使得它很可能也可以在最近的神经物理实验表明的实际神经系统中发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号