首页> 美国卫生研究院文献>other >An optimized informatics pipeline for mass spectrometry-based peptidomics
【2h】

An optimized informatics pipeline for mass spectrometry-based peptidomics

机译:用于基于质谱的肽组学的优化信息学渠道

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The comprehensive MS analysis of the peptidome, the intracellular and intercellular products of protein degradation, has the potential to provide novel insights on endogenous proteolytic processing and their utility in disease diagnosis and prognosis. Along with the advances in MS instrumentation and related platforms, a plethora of proteomics data analysis tools have been applied for direct use in peptidomics; however an evaluation of the currently available informatics pipelines for peptidomics data analysis has yet to be reported. In this study, we begin by evaluating the results of several popular MS/MS database search engines including MS-GF+, SEQUEST and MS-Align+ for peptidomics data analysis, followed by identification and label-free quantification using the well-established accurate mass and time (AMT) tag and newly developed informed quantification (IQ) approaches, both based on direct LC-MS analysis. Our results demonstrate that MS-GF+ out-performed both SEQUEST and MS-Align+ in identifying peptidome peptides. Using a database established from MS-GF+ peptide identifications, both the AMT tag and IQ approaches provided significantly deeper peptidome coverage and less missing data for each individual data set than the MS/MS methods, while achieving robust label-free quantification. Besides having an excellent correlation with the AMT tag quantification results, IQ also provided slightly higher peptidome coverage. Taken together, we propose an optimized informatics pipeline combining MS-GF+ for initial database searching with IQ (or AMT tag) approaches for identification and label-free quantification for high-throughput, comprehensive and quantitative peptidomics analysis.
机译:对肽组,蛋白质降解的细胞内和细胞间产物进行全面的MS分析,有可能为内源性蛋白水解加工及其在疾病诊断和预后中的应用提供新颖的见解。随着MS仪器和相关平台的发展,大量的蛋白质组学数据分析工具已被直接用于肽组学中。但是,尚未对肽段数据分析的当前可用信息学管道进行评估。在这项研究中,我们首先评估几种流行的MS / MS数据库搜索引擎的结果,包括用于肽组学数据分析的MS-GF +,SEQUEST和MS-Align +,然后使用公认的准确质量数和时间(AMT)标签和新开发的信息定量(IQ)方法,均基于直接LC-MS分析。我们的结果证明,在鉴定肽组肽时,MS-GF +优于SEQUEST和MS-Align +。使用MS-GF +肽鉴定建立的数据库,与MS / MS方法相比,AMT标签和IQ方法都为肽谱覆盖率和MS / MS方法提供了更深的覆盖范围,并且每个数据集的丢失数据更少,同时实现了可靠的无标记定量。除了与AMT标签定量结果具有极好的相关性外,IQ还提供了更高的肽组覆盖率。综上所述,我们提出了一条优化的信息学管道,该管道结合了用于初始数据库搜索的MS-GF +与IQ(或AMT标签)方法,用于鉴定和无标签定量,以进行高通量,全面和定量的肽组分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号