首页> 美国卫生研究院文献>other >Use of Approximate Bayesian Computation to Assess and Fit Models of Mycobacterium leprae to Predict Outcomes of the Brazilian Control Program
【2h】

Use of Approximate Bayesian Computation to Assess and Fit Models of Mycobacterium leprae to Predict Outcomes of the Brazilian Control Program

机译:使用近似贝叶斯计算评估和拟合麻风分枝杆菌的模型以预测巴西控制计划的结果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hansen’s disease (leprosy) elimination has proven difficult in several countries, including Brazil, and there is a need for a mathematical model that can predict control program efficacy. This study applied the Approximate Bayesian Computation algorithm to fit 6 different proposed models to each of the 5 regions of Brazil, then fitted hierarchical models based on the best-fit regional models to the entire country. The best model proposed for most regions was a simple model. Posterior checks found that the model results were more similar to the observed incidence after fitting than before, and that parameters varied slightly by region. Current control programs were predicted to require additional measures to eliminate Hansen’s Disease as a public health problem in Brazil.
机译:在包括巴西在内的多个国家,证明消除汉森氏病(麻风)非常困难,因此需要一种数学模型来预测控制程序的功效。这项研究应用了近似贝叶斯计算算法,将6个不同的拟议模型拟合到巴西的5个地区中的每个地区,然后根据最适合的地区模型将分层模型拟合到了整个国家。针对大多数区域提出的最佳模型是简单模型。后验发现,拟合后的模型结果与观察到的发生率比以前更相似,并且各区域的参数略有不同。预计当前的控制计划将需要采取其他措施来消除作为巴西公共卫生问题的汉森氏病。

著录项

  • 期刊名称 other
  • 作者单位
  • 年(卷),期 -1(10),6
  • 年度 -1
  • 页码 e0129535
  • 总页数 18
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号