首页> 美国卫生研究院文献>Frontiers in Plant Science >The modulation of leaf metabolism plays a role in salt tolerance of Cymodocea nodosa exposed to hypersaline stress in mesocosms
【2h】

The modulation of leaf metabolism plays a role in salt tolerance of Cymodocea nodosa exposed to hypersaline stress in mesocosms

机译:叶片代谢的调节对中膜高盐胁迫下结节藻的耐盐性有影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Applying proteomics, we tested the physiological responses of the euryhaline seagrass Cymodocea nodosa to deliberate manipulation of salinity in a mesocosm system. Plants were subjected to a chronic hypersaline condition (43 psu) to compare protein expression and plant photochemistry responses after 15 and 30 days of exposure with those of plants cultured under normal/ambient saline conditions (37 psu). Results showed a general decline in the expression level of leaf proteins in hypersaline stressed plants, with more intense reductions after long-lasting exposure. Specifically, the carbon-fixing enzyme RuBisCo displayed a lower accumulation level in stressed plants relative to controls. In contrast, the key enzymes involved in the regulation of glycolysis, cytosolic glyceraldehyde-3-phosphate dehydrogenase, enolase 2 and triose-phosphate isomerase, showed significantly higher accumulation levels. These responses suggested a shift in carbon metabolism in stressed plants. Hypersaline stress also induced a significant alteration of the photosynthetic physiology of C. nodosa by means of a down-regulation in structural proteins and enzymes of both PSII and PSI. However we found an over-expression of the cytochrome b559 alpha subunit of the PSII initial complex, which is a receptor for the PSII core proteins involved in biogenesis or repair processes and therefore potentially involved in the absence of effects at the photochemical level of stressed plants. As expected hypersalinity also affects vacuolar metabolism by increasing the leaf cell turgor pressure and enhancing the up-take of Na+ by over-accumulating the tonoplast specific intrinsic protein pyrophosphate-energized inorganic pyrophosphatase (H(+)-PPase) coupled to the Na+/H+-antiporter. The modulation of carbon metabolism and the enhancement of vacuole capacity in Na+ sequestration and osmolarity changes are discussed in relation to salt tolerance of C. nodosa.
机译:应用蛋白质组学,我们测试了欧亚扁豆海藻Cymodocea nodosa的生理反应,以有意识地控制中层系统中的盐度。将植物置于慢性高盐条件下(43 psu),以比较暴露于15天和30天后与在正常/环境盐水条件下培养的植物(37 psu)的蛋白质表达和植物光化学反应。结果表明,在高盐胁迫的植物中,叶片蛋白质的表达水平普遍下降,经过长期暴露后其下降幅度更大。具体而言,固碳酶RuBisCo相对于对照在胁迫植物中显示出较低的积累水平。相反,参与糖酵解调节的关键酶,胞质甘油三醛-磷酸三磷酸脱氢酶,烯醇酶2和磷酸三糖磷酸异构酶,显示出明显更高的积累水平。这些反应表明胁迫植物的碳代谢发生了变化。高盐胁迫还通过下调PSII和PSI的结构蛋白和酶来诱导结节梭菌的光合生理发生显着变化。然而,我们发现PSII初始复合物的细胞色素b559α亚基过度表达,它是参与生物发生或修复过程的PSII核心蛋白的受体,因此可能涉及在胁迫植物的光化学水平上没有影响。如预期的那样,高盐度还会通过增加叶细胞膨大压力并通过过度积累液泡膜特异性内在蛋白焦磷酸化的无机焦磷酸酶(H(+)-)来增加Na + 的摄取,从而影响液泡代谢。 PPase)与Na + / H + -反向转运蛋白偶联。讨论了碳结节的耐盐性与Na + 螯合和渗透压变化的碳代谢调控和液泡能力增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号