首页> 美国卫生研究院文献>other >Hedge Scope Detection in Biomedical Texts: An Effective Dependency-Based Method
【2h】

Hedge Scope Detection in Biomedical Texts: An Effective Dependency-Based Method

机译:生物医学文本中的树篱范围检测:一种有效的基于依赖的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hedge detection is used to distinguish uncertain information from facts, which is of essential importance in biomedical information extraction. The task of hedge detection is often divided into two subtasks: detecting uncertain cues and their linguistic scope. Hedge scope is a sequence of tokens including the hedge cue in a sentence. Previous hedge scope detection methods usually take all tokens in a sentence as candidate boundaries, which inevitably generate a large number of negatives for classifiers. The imbalanced instances seriously mislead classifiers and result in lower performance. This paper proposes a >dependency-based candidate boundary selection method (DCBS), which selects the most likely tokens as candidate boundaries and removes the exceptional tokens which have less potential to improve the performance based on dependency tree. In addition, we employ the composite kernel to integrate lexical and syntactic information and demonstrate the effectiveness of structured syntactic features for hedge scope detection. Experiments on the CoNLL-2010 Shared Task corpus show that our method achieves 71.92% F1-score on the golden standard cues, which is 4.11% higher than the system without using DCBS. Although the candidate boundary selection method is only evaluated on hedge scope detection here, it can be popularized to other kinds of scope learning tasks.
机译:对冲检测用于区分不确定信息和事实,这在生物医学信息提取中至关重要。树篱检测的任务通常分为两个子任务:检测不确定的线索及其语言范围。对冲范围是一系列标记,包括句子中的对冲提示。先前的树篱范围检测方法通常将句子中的所有标记作为候选边界,这不可避免地为分类器生成大量否定词。不平衡的实例会严重误导分类器,并导致性能降低。本文提出了一种>基于依赖关系的候选边界选择方法(DCBS),该方法选择最可能的标记作为候选边界,并删除基于依赖性树的,性能改善潜力较小的例外标记。此外,我们使用了复合内核来集成词汇和句法信息,并演示了结构化句法特征对对冲范围检测的有效性。 CoNLL-2010共享任务语料库的实验表明,我们的方法在黄金标准线索上的F1-分数达到71.92%,比不使用DCBS的系统高4.11%。虽然此处仅对冲范围检测中评估了候选边界选择方法,但可以将其推广到其他种类的范围学习任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号