首页> 美国卫生研究院文献>other >A Hierarchical Bayesian Model to Predict Self-Thinning Line for Chinese Fir in Southern China
【2h】

A Hierarchical Bayesian Model to Predict Self-Thinning Line for Chinese Fir in Southern China

机译:贝叶斯层次模型预测华南杉木自瘦线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Self-thinning is a dynamic equilibrium between forest growth and mortality at full site occupancy. Parameters of the self-thinning lines are often confounded by differences across various stand and site conditions. For overcoming the problem of hierarchical and repeated measures, we used hierarchical Bayesian method to estimate the self-thinning line. The results showed that the self-thinning line for Chinese fir (Cunninghamia lanceolata (Lamb.)Hook.) plantations was not sensitive to the initial planting density. The uncertainty of model predictions was mostly due to within-subject variability. The simulation precision of hierarchical Bayesian method was better than that of stochastic frontier function (SFF). Hierarchical Bayesian method provided a reasonable explanation of the impact of other variables (site quality, soil type, aspect, etc.) on self-thinning line, which gave us the posterior distribution of parameters of self-thinning line. The research of self-thinning relationship could be benefit from the use of hierarchical Bayesian method.
机译:自我稀疏是指在林地全员居住时森林生长与死亡率之间的动态平衡。自稀生产线的参数通常会因各种展位和工地条件的差异而混淆。为了克服分层和重复测量的问题,我们使用分层贝叶斯方法来估计自稀疏线。结果表明,杉木(Cunninghamia lanceolata(Lamb。)Hook。)人工林的自稀系对初始种植密度不敏感。模型预测的不确定性主要是由于受试者内部的可变性。分层贝叶斯方法的仿真精度优于随机边界函数(SFF)。多层贝叶斯方法合理解释了其他变量(场地质量,土壤类型,坡向等)对自稀疏线的影响,这为我们提供了自稀疏线参数的后验分布。自分层关系的研究可以受益于分层贝叶斯方法的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号