首页> 美国卫生研究院文献>other >A Consistent Information Criterion for Support Vector Machines in Diverging Model Spaces
【2h】

A Consistent Information Criterion for Support Vector Machines in Diverging Model Spaces

机译:离散模型空间中支持向量机的一致信息准则

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Information criteria have been popularly used in model selection and proved to possess nice theoretical properties. For classification, proposed support vector machine information criterion for feature selection and provided encouraging numerical evidence. Yet no theoretical justification was given there. This work aims to fill the gap and to provide some theoretical justifications for support vector machine information criterion in both fixed and diverging model spaces. We first derive a uniform convergence rate for the support vector machine solution and then show that a modification of the support vector machine information criterion achieves model selection consistency even when the number of features diverges at an exponential rate of the sample size. This consistency result can be further applied to selecting the optimal tuning parameter for various penalized support vector machine methods. Finite-sample performance of the proposed information criterion is investigated using Monte Carlo studies and one real-world gene selection problem.
机译:信息准则已广泛用于模型选择中,并被证明具有良好的理论特性。对于分类,提出了用于特征选择的支持向量机信息准则,并提供了令人鼓舞的数值证据。然而,那里没有给出任何理论依据。这项工作旨在填补空白,并为固定和离散模型空间中的支持向量机信息准则提供一些理论依据。我们首先得出支持向量机解决方案的一致收敛速度,然后证明即使特征量以样本大小的指数速度发生差异,对支持向量机信息准则的修改也可以实现模型选择的一致性。该一致性结果可以进一步应用于为各种惩罚性支持向量机方法选择最佳调整参数。使用蒙特卡洛研究和一个现实世界的基因选择问题,对提出的信息标准的有限样本性能进行了研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号