首页> 美国卫生研究院文献>other >Compressive Sensing Based Q-Space Resampling for Handling Fast Bulk Motion in Hardi Acquisitions
【2h】

Compressive Sensing Based Q-Space Resampling for Handling Fast Bulk Motion in Hardi Acquisitions

机译:基于压缩感知的Q空间重采样以处理Hardi采集中的快速批量运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Diffusion-weighted (DW) MRI has become a widely adopted imaging modality to reveal the underlying brain connectivity. Long acquisition times and/or non-cooperative patients increase the chances of motion-related artifacts. Whereas slow bulk motion results in inter-gradient misalignment which can be handled via retrospective motion correction algorithms, fast bulk motion usually affects data during the application of a single diffusion gradient causing signal dropout artifacts. Common practices opt to discard gradients bearing signal attenuation due to the difficulty of their retrospective correction, with the disadvantage to lose full gradients for further processing. Nonetheless, such attenuation might only affect limited number of slices within a gradient volume. Q-space resampling has recently been proposed to recover corrupted slices while saving gradients for subsequent reconstruction. However, few corrupted gradients are implicitly assumed which might not hold in case of scanning unsedated infants or patients in pain. In this paper, we propose to adopt recent advances in compressive sensing based reconstruction of the diffusion orientation distribution functions (ODF) with under sampled measurements to resample corrupted slices. We make use of Simple Harmonic Oscillator based Reconstruction and Estimation (SHORE) basis functions which can analytically model ODF from arbitrary sampled signals. We demonstrate the impact of the proposed resampling strategy compared to state-of-art resampling and gradient exclusion on simulated intra-gradient motion as well as samples from real DWI data.
机译:弥散加权(DW)MRI已成为广泛采用的成像方式,以揭示潜在的大脑连通性。采集时间长和/或不合作的患者增加了与运动有关的伪影的机会。缓慢的整体运动会导致渐变之间的不对齐,可以通过追溯运动校正算法来处理,而快速的整体运动通常会在应用单个扩散梯度的过程中影响数据,从而导致信号丢失。由于追溯校正的困难,通常的做法是选择放弃带有信号衰减的梯度,但缺点是失去完整的梯度以进行进一步处理。尽管如此,这种衰减可能仅影响梯度体积内有限数量的切片。最近已提出Q空间重采样以恢复损坏的切片,同时保存梯度以用于后续重建。但是,隐含地假设很少有损坏的梯度,这在扫描未镇静的婴儿或处于疼痛状态的患者时可能无法解决。在本文中,我们建议采用基于压缩传感的最新进展,对扩散方向分布函数(ODF)进行重建,并在欠采样的情况下对损坏的切片进行重新采样。我们利用基于简单谐波振荡器的重构和估计(SHORE)基函数,可以根据任意采样信号对ODF进行解析建模。我们演示了与最新的重采样和梯度排除相比,拟议的重采样策略对模拟帧内梯度运动以及来自真实DWI数据的样本的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号