首页> 美国卫生研究院文献>other >The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.)
【2h】

The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.)

机译:多种PGPR粘质沙雷氏菌CDP-13增强诱导小麦(Triticum aestivum L.)的系统抗性和增强的耐盐性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present study demonstrates the plant growth promoting (PGP) potential of a bacterial isolate CDP-13 isolated from ‘Capparis decidua’ plant, and its ability to protect plants from the deleterious effect of biotic and abiotic stressors. Based on 16S rRNA gene sequence analysis, the isolate was identified as Serratia marcescens. Among the PGP traits, the isolate was found to be positive for ACC deaminase activity, phosphate solubilization, production of siderophore, indole acetic acid production, nitrogen fixation, and ammonia production. CDP-13 showed growth at an increased salt (NaCl) concentration of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. The inoculation of S. marcescens enhanced the growth of wheat plant under salinity stress (150–200 mM). It significantly reduced inhibition of plant growth (15 to 85%) caused by salt stressors. Application of CDP-13 also modulated concentration (20 to 75%) of different osmoprotectants (proline, malondialdehyde, total soluble sugar, total protein content, and indole acetic acid) in plants suggesting its role in enabling plants to tolerate salt stressors. In addition, bacterial inoculation also reduced the disease severity caused by fungal infection, which illustrated its ability to confer induced systemic resistance (ISR) in host plants. Treatment of wheat plants with the test organism caused alteration in anti-oxidative enzymes activities (Superoxide dismutase, Catalase, and Peroxidase) under various salinity levels, and therefore minimizes the salinity-induced oxidative damages to the plants. Colonization efficiency of strain CDP-13 was confirmed by CFU count, epi-fluorescence microscopy, and ERIC-PCR-based DNA fingerprinting approach. Hence, the study indicates that bacterium CDP-13 enhances plant growth, and has potential for the amelioration of salinity stress in wheat plants. Likewise, the results also provide insights into biotechnological approaches to using PGPR as an alternative to chemicals and pesticides.
机译:本研究表明,从“蜕皮山羊草”植物中分离出的细菌分离物CDP-13具有促进植物生长(PGP)的潜力,并具有保护植物免受生物和非生物胁迫源有害作用的能力。基于16S rRNA基因序列分析,分离物被鉴定为粘质沙雷氏菌。在PGP特征中,发现该分离物对ACC脱氨酶活性,磷酸盐溶解,铁载体的产生,吲哚乙酸的产生,固氮和氨的产生呈阳性。 CDP-13在高达6%的增加的盐(NaCl)浓度下显示出生长,表明其可以生存并与在盐渍土壤中生长的植物结合。在盐度胁迫下(150-200 mM)接种苦苣菜(S. marcescens)可以促进小麦的生长。它显着降低了盐胁迫对植物生长的抑制作用(15%至85%)。 CDP-13的应用还调节了植物中不同渗透保护剂(脯氨酸,丙二醛,总可溶性糖,总蛋白质含量和吲哚乙酸)的浓度(20%至75%),表明其在使植物耐受盐胁迫中的作用。另外,细菌接种还降低了由真菌感染引起的疾病严重性,这说明了其在宿主植物中赋予诱导的系统抗性(ISR)的能力。用受试生物处理小麦植物会导致在各种盐度水平下抗氧化酶活性(超氧化物歧化酶,过氧化氢酶和过氧化物酶)的变化,因此将盐度引起的对植物的氧化损伤降至最低。通过CFU计数,落射荧光显微镜和基于ERIC-PCR的DNA指纹图谱方法确认了CDP-13菌株的定殖效率。因此,该研究表明细菌CDP-13可以促进植物生长,并具有改善小麦植物盐分胁迫的潜力。同样,研究结果也为使用PGPR替代化学药品和杀虫剂的生物技术方法提供了见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号