首页> 美国卫生研究院文献>other >A new method for ecoacoustics? Toward the extraction and evaluation of ecologically-meaningful soundscape components using sparse coding methods
【2h】

A new method for ecoacoustics? Toward the extraction and evaluation of ecologically-meaningful soundscape components using sparse coding methods

机译:一种新的生态声学方法?利用稀疏编码方法提取和评价具有生态意义的音景成分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Passive acoustic monitoring is emerging as a promising non-invasive proxy for ecological complexity with potential as a tool for remote assessment and monitoring (, ). Rather than attempting to recognise species-specific calls, either manually or automatically, there is a growing interest in evaluating the global acoustic environment. Positioned within the conceptual framework of ecoacoustics, a growing number of indices have been proposed which aim to capture community-level dynamics by (e.g., , ; , ; , ) by providing statistical summaries of the frequency or time domain signal. Although promising, the ecological relevance and efficacy as a monitoring tool of these indices is still unclear. In this paper we suggest that by virtue of operating in the time or frequency domain, existing indices are limited in their ability to access key structural information in the spectro-temporal domain. Alternative methods in which time-frequency dynamics are preserved are considered. Sparse-coding and source separation algorithms (specifically, shift-invariant probabilistic latent component analysis in 2D) are proposed as a means to access and summarise time-frequency dynamics which may be more ecologically-meaningful.
机译:无源声波监测正在成为一种有望解决生态问题的非侵入式代理,并有潜力作为远程评估和监测的工具(,)。与其尝试手动或自动识别物种特定的呼叫,不如评估全球声环境。定位在生态声学的概念框架内,已经提出了越来越多的指标,旨在通过提供频域或时域信号的统计摘要来捕获社区级别的动态,例如(,,,,,)。尽管有希望,但作为这些指标的监测工具的生态相关性和功效仍不清楚。在本文中,我们建议通过在时域或频域中进行操作,现有索引在频谱时域中访问关键结构信息的能力受到限制。考虑保留时频动态的替代方法。提出了稀疏编码和源分离算法(特别是2D中的位移不变概率潜在成分分析)作为一种访问和汇总时频动态的方法,这种方法可能更具生态意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号