首页> 美国卫生研究院文献>other >Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis
【2h】

Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis

机译:通过13C代谢通量分析综合分析有氧和无氧条件下大肠杆菌中葡萄糖和木糖的代谢。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Glucose and xylose are the two most abundant sugars derived from the breakdown of lignocellulosic biomass. While aerobic glucose metabolism is relatively well understood in E. coli, until now there have been only a handful of studies focused on anaerobic glucose metabolism and no 13C-flux studies on xylose metabolism. In the absence of experimentally validated flux maps, constraint-based approaches such as MOMA and RELATCH cannot be used to guide new metabolic engineering designs. In this work, we have addressed this critical gap in current understanding by performing comprehensive characterizations of glucose and xylose metabolism under aerobic and anaerobic conditions, using recent state-of-the-art techniques in 13C metabolic flux analysis (13C-MFA). Specifically, we quantified precise metabolic fluxes for each condition by performing parallel labeling experiments and analyzing the data through integrated 13C-MFA using the optimal tracers [1,2-13C]glucose, [1,6-13C]glucose, [1,2-13C]xylose and [5-13C]xylose. We also quantified changes in biomass composition and confirmed turnover of macromolecules by applying [U-13C]glucose and [U-13C]xylose tracers. We demonstrate that under anaerobic growth conditions there is significant turnover of lipids and that a significant portion of CO2 originates from biomass turnover. Using knockout strains, we also demonstrate that β-oxidation is critical for anaerobic growth on xylose. Quantitative analysis of co-factor balances (NADH/FADH2, NADPH, and ATP) for different growth conditions provided new insights regarding the interplay of energy and redox metabolism and the impact on E. coli cell physiology.
机译:葡萄糖和木糖是源自木质纤维素生物质分解的两种最丰富的糖。尽管在大肠杆菌中对好氧葡萄糖代谢的理解相对较好,但是到目前为止,只有少数研究集中在厌氧葡萄糖代谢上,还没有关于木糖代谢的 13 C-flux研究。在没有经过实验验证的通量图的情况下,基于约束的方法(例如MOMA和RELATCH)不能用于指导新的代谢工程设计。在这项工作中,我们通过使用 13 C代谢通量中的最新技术,在有氧和厌氧条件下对葡萄糖和木糖代谢进行了全面表征,从而解决了当前认识中的这一重大差距。分析( 13 C-MFA)。具体而言,我们通过进行平行标记实验并使用最佳示踪剂[1,2- 13 C通过集成的 13 C-MFA分析数据,从而量化了每种情况下的精确代谢通量]葡萄糖,[1,6- 13 C]葡萄糖,[1,2- 13 C]木糖和[5- 13 C]木糖。我们还通过应用[U- 13 C]葡萄糖和[U- 13 C]木糖示踪剂量化了生物量组成的变化并确认了大分子的周转率。我们证明,在厌氧生长条件下,脂质的转化率很高,而二氧化碳的很大一部分来自生物质转化率。使用敲除菌株,我们还证明了β-氧化对于木糖厌氧生长至关重要。定量分析不同生长条件下的辅因子平衡(NADH / FADH2,NADPH和ATP),提供了有关能量和氧化还原代谢相互作用以及对大肠杆菌细胞生理学影响的新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号