首页> 美国卫生研究院文献>other >The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking Preventing the Adaptive Responses of Tomato Plants to Salt Stress
【2h】

The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking Preventing the Adaptive Responses of Tomato Plants to Salt Stress

机译:哈茨木霉与化学施肥的结合导致植物激素网络的失控阻止了番茄植物对盐胁迫的适应性反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plants have evolved effective mechanisms to avoid or reduce the potential damage caused by abiotic stresses. In addition to biocontrol abilities, Trichoderma genus fungi promote growth and alleviate the adverse effects caused by saline stress in plants. Morphological, physiological, and molecular changes were analyzed in salt-stressed tomato plants grown under greenhouse conditions in order to investigate the effects of chemical and biological fertilizations. The application of Trichoderma harzianum T34 to tomato seeds had very positive effects on plant growth, independently of chemical fertilization. The application of salt stress significantly changed the parameters related to growth and gas-exchange rates in tomato plants subject to chemical fertilization. However, the gas-exchange parameters were not affected in unfertilized plants under the same moderate saline stress. The combined application of T34 and salt significantly reduced the fresh and dry weights of NPK-fertilized plants, while the opposite effects were detected when no chemical fertilization was applied. Decaying symptoms were observed in salt-stressed and chemically fertilized plants previously treated with T34. This damaged phenotype was linked to significantly higher intercellular CO2 and slight increases in stomatal conductance and transpiration, and to the deregulation of phytohormone networking in terms of significantly lower expression levels of the salt overlay sensitivity 1 (SOS1) gene, and the genes involved in signaling abscisic acid-, ethylene-, and salicylic acid-dependent pathways and ROS production, in comparison with those observed in salt-challenged NPK-fertilized plants.
机译:植物已经进化出有效的机制来避免或减少由非生物胁迫引起的潜在损害。除生物控制能力外,木霉属真菌还促进植物生长并减轻因盐胁迫引起的不良影响。为了研究化学和生物施肥的影响,分析了在温室条件下生长的盐胁迫番茄植株的形态,生理和分子变化。哈茨木霉T34应用于番茄种子对植物的生长具有非常积极的影响,而与化学施肥无关。盐胁迫的施加显着改变了要进行化学施肥的番茄植物中与生长和气体交换速率有关的参数。但是,在相同的中度盐胁迫下,未受精植物的气体交换参数不受影响。 T34和盐的联合施用显着降低了NPK施肥的植物的鲜重和干重,而当不进行化学施肥时,则发现相反的效果。在先前用T34处理过的盐胁迫和化学施肥的植物中观察到腐烂症状。这种受损的表型与显着降低盐覆盖敏感性1(SOS1)基因及其信号传导基因的表达水平有关,与细胞间CO2显着升高以及气孔导度和蒸腾作用的轻微增加有关,并且与植物激素网络的失调有关。与在盐激发的NPK受精植物中观察到的相比,脱落酸,乙烯和水杨酸依赖性途径和ROS产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号