首页> 美国卫生研究院文献>Frontiers in Physiology >Personalized Medication Response Prediction for Attention-Deficit Hyperactivity Disorder: Learning in the Model Space vs. Learning in the Data Space
【2h】

Personalized Medication Response Prediction for Attention-Deficit Hyperactivity Disorder: Learning in the Model Space vs. Learning in the Data Space

机译:注意缺陷多动障碍的个性化药物反应预测:模型空间中的学习与数据空间中的学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Attention-Deficit Hyperactive Disorder (ADHD) is one of the most common mental health disorders amongst school-aged children with an estimated prevalence of 5% in the global population (American Psychiatric Association, ). Stimulants, particularly methylphenidate (MPH), are the first-line option in the treatment of ADHD (Reeves and Schweitzer, ; Dopheide and Pliszka, ) and are prescribed to an increasing number of children and adolescents in the US and the UK every year (Safer et al., ; McCarthy et al., ), though recent studies suggest that this is tailing off, e.g., Holden et al. (). Around 70% of children demonstrate a clinically significant treatment response to stimulant medication (Spencer et al., ; Schachter et al., ; Swanson et al., ; Barbaresi et al., ). However, it is unclear which patient characteristics may moderate treatment effectiveness. As such, most existing research has focused on investigating univariate or multivariate correlations between a set of patient characteristics and the treatment outcome, with respect to dosage of one or several types of medication. The results of such studies are often contradictory and inconclusive due to a combination of small sample sizes, low-quality data, or a lack of available information on covariates. In this paper, feature extraction techniques such as latent trait analysis were applied to reduce the dimension of on a large dataset of patient characteristics, including the responses to symptom-based questionnaires, developmental health factors, demographic variables such as age and gender, and socioeconomic factors such as parental income. We introduce a Bayesian modeling approach in a “learning in the model space” framework that combines existing knowledge in the literature on factors that may potentially affect treatment response, with constraints imposed by a treatment response model. The model is personalized such that the variability among subjects is accounted for by a set of subject-specific parameters. For remission classification, this approach compares favorably with conventional methods such as support vector machines and mixed effect models on a range of performance measures. For instance, the proposed approach achieved an area under receiver operator characteristic curve of 82–84%, compared to 75–77% obtained from conventional regression or machine learning (“learning in the data space”) methods.
机译:注意缺陷多动障碍(ADHD)是学龄儿童中最常见的心理健康障碍之一,估计在全球人口中患病率为5%(美国精神病学协会)。兴奋剂,尤其是哌醋甲酯(MPH),是治疗多动症的一线治疗药物(Reeves和Schweitzer,Dopheide和Pliszka,),并且在美国和英国,每年越来越多的儿童和青少年被开处方( Safer等人;; McCarthy等人,),尽管最近的研究表明,这种情况正在逐渐消失,例如Holden等人。 ()。大约70%的儿童表现出对兴奋药物的临床显着治疗反应(Spencer等人; Schachter等人; Swanson等人; Barbaresi等人)。但是,尚不清楚哪些患者特征可能会降低治疗效果。这样,大多数现有的研究都集中在调查一种或几种药物剂量方面一组患者特征与治疗结果之间的单变量或多变量相关性。由于样本量小,数据质量低或缺少协变量的可用信息,此类研究的结果通常是矛盾且不确定的。在本文中,应用了诸如潜在性状分析之类的特征提取技术来减少大型患者特征数据集的维度,包括对基于症状的问卷的回答,发育健康因素,年龄和性别等人口统计学变量以及社会经济因素。父母收入等因素。我们在“在模型空间中学习”框架中引入贝叶斯建模方法,该方法将文献中关于可能影响治疗反应的因素的现有知识与治疗反应模型强加的限制相结合。该模型是个性化的,因此可以通过一组特定于受试者的参数来解决受试者之间的差异。对于缓解分类,此方法在一系列性能指标上与传统方法(如支持向量机和混合效应模型)相比具有优势。例如,与传统回归或机器学习(“在数据空间中学习”)方法获得的75-77%相比,所提出的方法在接收器操作员特征曲线下的面积为82-84%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号