首页> 美国卫生研究院文献>other >A Modified Dynamic Surface Controller for Delayed Neuromuscular Electrical Stimulation
【2h】

A Modified Dynamic Surface Controller for Delayed Neuromuscular Electrical Stimulation

机译:延迟神经肌肉电刺激的改进的动态表面控制器。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A widely accepted model of muscle force generation during neuromuscular electrical stimulation (NMES) is a second-order nonlinear musculoskeletal dynamics cascaded to a delayed first-order muscle activation dynamics. However, most nonlinear NMES control methods have either neglected the muscle activation dynamics or used an ad hoc strategies to tackle the muscle activation dynamics, which may not guarantee control stability. We hypothesized that a nonlinear control design that includes muscle activation dynamics can improve the control performance. In this paper, a dynamic surface control (DSC) approach was used to design a PID-based NMES controller that compensates for EMD in the activation dynamics. Because the muscle activation is unmeasurable, a model based estimator was used to estimate the muscle activation in realtime. The Lyapunov stability analysis confirmed that the newly developed controller achieves semi-global uniformly ultimately bounded (SGUUB) tracking for the musculoskeletal system. Experiments were performed on two able-bodied subjects and one spinal cord injury subject using a modified leg extension machine. These experiments illustrate the performance of the new controller and compare it to a previous PID-DC controller that did not consider muscle activation dynamics in the control design. These experiments support our hypothesis that a control design that includes muscle activation improves the NMES control performance.
机译:神经肌肉电刺激(NMES)期间肌肉力量产生的一种广泛接受的模型是级联到延迟的一阶肌肉激活动力学的二阶非线性肌肉骨骼动力学。但是,大多数非线性NMES控制方法要么忽略了肌肉激活动力学,要么使用了临时策略来解决肌肉激活动力学问题,这可能无法保证控制稳定性。我们假设包括肌肉激活动力学的非线性控制设计可以改善控制性能。在本文中,动态表面控制(DSC)方法用于设计基于PID的NMES控制器,该控制器补偿激活动力学中的EMD。由于肌肉的激活是无法测量的,因此使用基于模型的估计器来实时估计肌肉的激活。 Lyapunov稳定性分析证实,新开发的控制器可实现肌肉骨骼系统的半全局均匀最终有界(SGUUB)跟踪。使用改良的伸腿机对两名健壮受试者和一名脊髓损伤受试者进行了实验。这些实验说明了新控制器的性能,并将其与以前的PID-DC控制器进行了比较,该PID-DC控制器在控制设计中未考虑肌肉激活动力学。这些实验支持我们的假设,即包括肌肉激活在内的控制设计可改善NMES控制性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号