首页> 美国卫生研究院文献>other >Direct comparison of time-resolved Terahertz spectroscopy and Hall Van der Pauw methods for measurement of carrier conductivity and mobility in bulk semiconductors
【2h】

Direct comparison of time-resolved Terahertz spectroscopy and Hall Van der Pauw methods for measurement of carrier conductivity and mobility in bulk semiconductors

机译:时间分辨太赫兹光谱法和Hall Van der Pauw方法的直接比较用于测量体半导体中的载流子电导率和迁移率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Charge carrier conductivity and mobility for various semiconductor wafers and crystals were measured by ultrafast above bandgap, optically excited Time-Resolved Terahertz Spectroscopy (TRTS) and Hall Van der Pauw contact methods to directly compare these approaches and validate the use of the non-contact optical approach for future materials and in-situ device analyses. Undoped and doped silicon (Si) wafers with resistances varying over six orders of magnitude were selected as model systems since contact Hall measurements are reliably made on this material. Conductivity and mobility obtained at room temperature by terahertz transmission and TRTS methods yields the sum of electron and hole mobility which agree very well with either directly measured or literature values for corresponding atomic and photo-doping densities. Careful evaluation of the optically-generated TRTS frequency-dependent conductivity also shows it is dominated by induced free-carrier absorption rather than small probe pulse phase shifts, which is commonly ascribed to changes in the complex conductivity from sample morphology and evaluation of carrier mobility by applying Drude scattering models. Thus, in this work, the real-valued, frequency-averaged conductivity was used to extract sample mobility without application of models. Examinations of germanium (Ge), gallium arsenide (GaAs), gallium phosphide (GaP) and zinc telluride (ZnTe) samples were also made to demonstrate the general applicability of the TRTS method, even for materials that do not reliably make good contacts (e.g., GaAs, GaP, ZnTe). For these cases, values for the sum of the electron and hole mobility also compare very favorably to measured or available published data.
机译:通过超快带隙以上,光学激发的时间分辨太赫兹光谱(TRTS)和Hall Van der Pauw接触方法来测量各种半导体晶片和晶体的载流子电导率和迁移率,以直接比较这些方法并验证非接触光学的使用未来材料和现场设备分析的方法。选择电阻变化超过六个数量级的未掺杂和掺杂的硅(Si)晶片作为模型系统,因为可以在这种材料上可靠地进行接触霍尔测量。在室温下通过太赫兹透射和TRTS方法获得的电导率和迁移率可得出电子和空穴迁移率的总和,与相应原子和光掺杂密度的直接测量值或文献值非常吻合。仔细评估光产生的TRTS频率相关的电导率还表明,它主要由感应的自由载流子吸收而不是小的探针脉冲相移决定,这通常归因于样品形态和电导率迁移率的复杂电导率变化。应用Drude散射模型。因此,在这项工作中,在不应用模型的情况下,使用实值,频率平均的电导率来提取样品的迁移率。还对锗(Ge),砷化镓(GaAs),磷化镓(GaP)和碲化锌(ZnTe)样品进行了测试,以证明TRTS方法的一般适用性,即使对于不能可靠地形成良好接触的材料(例如, ,GaAs,GaP,ZnTe)。对于这些情况,电子迁移率和空穴迁移率的总和也非常有利于与测量或可获得的公开数据进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号