首页> 美国卫生研究院文献>other >Sparse EEG/MEG source estimation via a group lasso
【2h】

Sparse EEG/MEG source estimation via a group lasso

机译:通过组套索进行稀疏EEG / MEG源估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Non-invasive recordings of human brain activity through electroencephalography (EEG) or magnetoencelphalography (MEG) are of value for both basic science and clinical applications in sensory, cognitive, and affective neuroscience. Here we introduce a new approach to estimating the intra-cranial sources of EEG/MEG activity measured from extra-cranial sensors. The approach is based on the group lasso, a sparse-prior inverse that has been adapted to take advantage of functionally-defined regions of interest for the definition of physiologically meaningful groups within a functionally-based common space. Detailed simulations using realistic source-geometries and data from a human Visual Evoked Potential experiment demonstrate that the group-lasso method has improved performance over traditional ℓ2 minimum-norm methods. In addition, we show that pooling source estimates across subjects over functionally defined regions of interest results in improvements in the accuracy of source estimates for both the group-lasso and minimum-norm approaches.
机译:通过脑电图(EEG)或磁脑电图(MEG)进行的人类大脑活动的非侵入性记录对于感官,认知和情感神经科学的基础科学和临床应用都是有价值的。在这里,我们介绍了一种新的方法来估算从颅外传感器测得的颅内EEG / MEG活性来源。该方法基于组套索,它是一种稀疏先验逆元,已被改编以利用功能定义的目标区域来定义基于功能的公共空间内的生理学有意义的基团。使用现实的源几何结构和来自人类视觉诱发电位实验的数据进行的详细模拟表明,组套索方法比传统的ℓ2最小范数方法具有更高的性能。此外,我们表明,在功能定义的感兴趣区域内跨主题合并源估计会导致组套索法和最小范数方法的源估计准确性提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号