首页> 美国卫生研究院文献>other >Imaging at ultrahigh magnetic fields: History challenges and solutions
【2h】

Imaging at ultrahigh magnetic fields: History challenges and solutions

机译:超高磁场成像:历史挑战和解决方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Following early efforts in applying nuclear magnetic resonance (NMR) spectroscopy to study biological processes in intact systems, and particularly since the introduction of 4 T human scanners circa 1990, rapid progress was made in imaging and spectroscopy studies of humans at 4 T and animal models at 9.4 T, leading to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has provided numerous technological solutions to challenges posed at these ultrahigh fields, and demonstrated the existence of significant advantages in signal-to-noise ratio and biological information content. Primary difference from lower fields is the deviation from the near field regime at the radiofrequencies (RF) corresponding to hydrogen resonance conditions. At such ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image non-uniformities for a given sample-coil configuration because of destructive and constructive interferences. These non-uniformities were initially considered detrimental to progress of imaging at high field strengths. However, they are advantageous for parallel imaging in signal reception and transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies and improvements in instrumentation and imaging methods, today ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques.
机译:在应用核磁共振(NMR)光谱研究完整系统中的生物过程的早期努力之后,尤其是自从1990年左右引入4 T人类扫描仪以来,在4 T和动物模型下的人体成像和光谱研究中取得了快速进展在9.4 T时,导致引入了7 T和更高的磁场供人类在大约20世纪初使用。在这些平台上进行的工作为这些超高领域带来的挑战提供了许多技术解决方案,并证明了在信噪比和生物信息含量方面存在重大优势。与低场的主要区别是在与氢共振条件相对应的射频(RF)下与近场的偏离。在这样的超高磁场下,RF的特征在于人体中传播的衰减波,由于相消和相长干扰,对于给定的样本线圈配置,这会导致图像不均匀。这些不均匀性最初被认为不利于高场强下的成像进展。然而,它们对于信号接收和传输中的并行成像是有利的,这两个关键技术在很大程度上说明了超高场的成功。通过这些技术以及仪器和成像方法的改进,当今的超高压领域已经在脑功能和解剖学成像方面取得了空前的发展,并开始涉足人体躯体和四肢的研究。尽管取得了如此广泛的成就,但是由于致力于超高领域研究和开发更好的仪器和技术的努力越来越多,这些成就仍然是未来的序幕。

著录项

  • 期刊名称 other
  • 作者

    Kamil Uğurbil;

  • 作者单位
  • 年(卷),期 -1(168),-1
  • 年度 -1
  • 页码 7–32
  • 总页数 65
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号