首页> 美国卫生研究院文献>other >Kernel-Regularized ICA for Computing Functional Topography from Resting-state fMRI
【2h】

Kernel-Regularized ICA for Computing Functional Topography from Resting-state fMRI

机译:内核正则化ICA用于从静止状态fMRI计算功能拓扑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Topographic regularity is a fundamental property in brain connectivity. In this work, we present a novel method for studying topographic regularity of functional connectivity based on resting-state fMRI (rfMRI), which is widely available and easy to acquire in large-scale studies. The main idea in our method is the incorporation of topographically regular structural connectivity for independent component analysis (ICA). This is enabled by the recent development of novel tractography and tract filtering algorithms that can generate highly organized fiber bundles connecting different brain regions. By leveraging these cutting-edge tractography algorithms, here we develop a kernel-regularized ICA method for the extraction of functional topography with rfMRI signals. In our experiments, we use rfMRI scans of 35 unrelated, right-handed subjects from the Human Connectome Project (HCP) to study the functional topography of the motor cortex. We first demonstrate that our method can generate functional connectivity maps with more regular topography than conventional group ICA. We also show that the components extracted by our algorithm are able to capture co-activation patterns that respect the organized topography of the motor cortex across the hemisphere. Finally, we show that our method achieves improved reproducibility as compared to conventional group ICA.
机译:地形规律性是大脑连通性的基本属性。在这项工作中,我们提出了一种基于静止状态功能磁共振成像(rfMRI)的功能连通性拓扑规律研究的新方法,该方法被广泛使用并且易于在大规模研究中获得。我们方法的主要思想是将地形规则的结构连接性纳入独立成分分析(ICA)。这是通过最近开发的新型束线术和束线过滤算法实现的,该算法可以生成连接不同大脑区域的高度组织化的纤维束。通过利用这些尖端的超声影像学算法,我们在此开发了一种内核正则化ICA方法,用于利用rfMRI信号提取功能性地形图。在我们的实验中,我们使用来自人类连接基因组计划(HCP)的35位不相关的右手受试者的rfMRI扫描来研究运动皮层的功能拓扑。我们首先证明,与传统的ICA组相比,我们的方法可以生成具有更规则地形的功能连接图。我们还表明,通过我们的算法提取的组件能够捕获遵循半球运动皮层组织形态的共激活模式。最后,我们表明,与传统的ICA组相比,我们的方法可实现更高的重现性。

著录项

  • 期刊名称 other
  • 作者

    Junyan Wang; Yonggang Shi;

  • 作者单位
  • 年(卷),期 -1(10433),-1
  • 年度 -1
  • 页码 373–381
  • 总页数 11
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号