首页> 美国卫生研究院文献>other >Insights into the Dynamics and Dissociation Mechanism of a Protein Redox Complex Using Molecular Dynamics
【2h】

Insights into the Dynamics and Dissociation Mechanism of a Protein Redox Complex Using Molecular Dynamics

机译:利用分子动力学洞察蛋白质氧化还原复合物的动力学和解离机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Leishmania major peroxidase (LmP) is structurally and functionally similar to the well-studied yeast cytochrome c peroxidase (CCP). A recent Brownian dynamics study showed that L. major cytochrome c (LmCytc) associates with LmP by forming an initial complex with the N-terminal helix A of LmP, followed by a movement toward the electron transfer (ET) site observed in the LmP-LmCytc crystal structure. Critical to forming the active electron transfer complex is an intermolecular Arg-Asp ion pair at the center of the interface. If the dissociation reaction is effectively the reverse of the association reaction, then rupture of the Asp-Arg ion pair should be followed by movement of LmCytc back toward LmP helix A. To test this possibility we have carried out multiple molecular dynamics simulations of LmP-LmCytc complex. In 5 separate simulations LmCytc is observed to indeed move toward helix A and in two of the simulations, the Asp-Arg ion pair breaks, which frees LmCytc to fully associate with the LmP helix A secondary binding site. These results support the “bind and crawl” or “velcro” mechanism of association wherein LmCytc forms a non-specific electrostatic complex with LmP helix A followed by a “crawl” toward the ET active site where the Asp-Arg ion pair holds the LmCytc in position for rapid ET. These simulations also point to Tyr134LmP as being important in the association/dissociation reactions. Experimentally mutating Tyr134 to Phe was found to decrease Km by 3.6 fold, consistent with its predicted role in complex formation by molecular dynamics simulations.
机译:利什曼原虫主要过氧化物酶(LmP)在结构和功能上类似于经过充分研究的酵母细胞色素c过氧化物酶(CCP)。最近的布朗动力学研究表明,主要L.Cytc通过与LmP的N末端螺旋A形成初始复合物,然后向LmP-中的电子转移(ET)位点移动,从而与LmP缔合。 LmCytc晶体结构。形成活性电子转移络合物的关键是在界面中心的分子间Arg-Asp离子对。如果解离反应实际上是缔合反应的逆向反应,则应在Asp-Arg离子对断裂后,将LmCytc移回LmP螺旋A。为测试这种可能性,我们已对LmP-进行了多个分子动力学模拟LmCytc复合体。在5个单独的模拟中,观察到LmCytc确实朝着螺旋A移动,而在两个模拟中,Asp-Arg离子对断裂,这释放了LmCytc与LmP螺旋A二级结合位点完全缔合。这些结果支持“结合和爬行”或“魔术贴”的缔合机制,其中LmCytc与LmP螺旋A形成非特异性静电复合物,然后向ET活性位点“爬行”,在该位点,Asp-Arg离子对保持LmCytc可以快速进行ET。这些模拟还指出,Tyr134LmP在缔合/解离反应中很重要。实验发现,将Tyr134突变为Phe可将Km降低3.6倍,这与通过分子动力学模拟预测的在复合物形成中的作用一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号