首页> 美国卫生研究院文献>Frontiers in Psychiatry >Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales
【2h】

Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales

机译:基于多系统精神病学量表的机器学习算法对自杀尝试的分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Classification and prediction of suicide attempts in high-risk groups is important for preventing suicide. The purpose of this study was to investigate whether the information from multiple clinical scales has classification power for identifying actual suicide attempts. Patients with depression and anxiety disorders (N = 573) were included, and each participant completed 31 self-report psychiatric scales and questionnaires about their history of suicide attempts. We then trained an artificial neural network classifier with 41 variables (31 psychiatric scales and 10 sociodemographic elements) and ranked the contribution of each variable for the classification of suicide attempts. To evaluate the clinical applicability of our model, we measured classification performance with top-ranked predictors. Our model had an overall accuracy of 93.7% in 1-month, 90.8% in 1-year, and 87.4% in lifetime suicide attempts detection. The area under the receiver operating characteristic curve (AUROC) was the highest for 1-month suicide attempts detection (0.93), followed by lifetime (0.89), and 1-year detection (0.87). Among all variables, the Emotion Regulation Questionnaire had the highest contribution, and the positive and negative characteristics of the scales similarly contributed to classification performance. Performance on suicide attempts classification was largely maintained when we only used the top five ranked variables for training (AUROC; 1-month, 0.75, 1-year, 0.85, lifetime suicide attempts detection, 0.87). Our findings indicate that information from self-report clinical scales can be useful for the classification of suicide attempts. Based on the reliable performance of the top five predictors alone, this machine learning approach could help clinicians identify high-risk patients in clinical settings.
机译:高危人群自杀未遂的分类和预测对于预防自杀很重要。这项研究的目的是调查来自多个临床量表的信息是否具有识别实际自杀未遂的分类能力。抑郁和焦虑症患者(N = 573)被纳入研究,每位参与者填写了31份自我报告的精神病量表和有关自杀未遂史的问卷。然后,我们训练了一个具有41个变量(31个精神病学量表和10个社会人口统计学要素)的人工神经网络分类器,并对每个变量对自杀未遂分类的贡献进行了排名。为了评估我们模型的临床适用性,我们使用排名靠前的预测因子来衡量分类性能。我们的模型在1个月内的总体准确性为93.7%,在1年内的总体准确性为90.8%,在终生自杀尝试检测中的总体准确性为87.4%。接受者工作特征曲线(AUROC)下的面积对于1个月自杀未遂检测最高(0.93),其次是寿命(0.89)和1年检测(0.87)。在所有变量中,“情绪调节问卷”的贡献最大,而量表的正负特征同样对分类表现有所贡献。当我们仅使用排名靠前的五个变量进行培训时(AUROC; 1个月,0.75、1年,0.85,终生自杀尝试检测,0.87),自杀尝试分类的性能在很大程度上得以维持。我们的发现表明,来自自我报告临床量表的信息对于自杀未遂的分类可能是有用的。仅基于前五个预测因素的可靠性能,这种机器学习方法就可以帮助临床医生在临床环境中识别高危患者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号