首页> 美国卫生研究院文献>other >Connectome-based predictive modeling of attention: Comparingdifferent functional connectivity features and prediction methods acrossdatasets
【2h】

Connectome-based predictive modeling of attention: Comparingdifferent functional connectivity features and prediction methods acrossdatasets

机译:基于Connectome的注意力预测模型:比较不同的功能连接功能和预测方法资料集

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Connectome-based predictive modeling (CPM; ; href="#R53" rid="R53" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_672739168">Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence () and sustained attention (), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson’s correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (href="#R41" rid="R41" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_672739207">Meskaldji et al., 2016). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N=25; ). The validationdatasets included: 1) data collected during performance of a stop-signal taskand at rest (N=83, including 19 participants who were administeredmethylphenidate prior to scanning; href="#R50" rid="R50" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_678063291">Rosenberg etal., 2016b; f al., 2014a), 2) data collected during Attention NetworkTask performance and rest (N=41, Rosenberg et al., in press), and 3)resting-state data and ADHD symptom severity from the ADHD-200 Consortium(N=113; ). Modelsdefined using all combinations of functional connectivity measure(Pearson’s correlation, accordance, and discordance) and predictionalgorithm (linear and PLS regression) predicted attentional abilities, withcorrelations between predicted and observed measures of attention as high as 0.9for internal validation, and 0.6 for external validation (all p’s< 0.05). Models trained on task data outperformed models trained on restdata. Pearson’s correlation and accordance features generally showed asmall numerical advantage over discordance features, while PLS regression modelswere usually better than linear regression models. Overall, in addition tocorrelation features combined with linear models (), it is useful to consideraccordance features and PLS regression for CPM.
机译:最近开发了基于Connectome的预测模型(CPM;; href="#R53" rid="R53" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_672739168"> Shen等,2017 )通过fMRI测量的功能性大脑连通性(FC)来预测性格和行为的个体差异,包括体液智力()和持续注意力()。在这里,我们使用CPM框架,比较了三种不同的FC量度(皮尔逊的相关性,一致性和不一致性)和两种不同的注意力功能预测算法(线性和偏最小二乘[PLS]回归)的预测能力。最近提出的一致性和不一致性FC措施分别跟踪同相同步和异相反相关(href =“#R41” rid =“ R41” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_672739207 “> Meskaldji等人,2016 )。我们使用基于任务或静止状态的FC数据定义了基于连接组的模型,并测试了(1)功能连接性度量和(2)特征选择/预测算法对个性化注意力预测的影响。使用留一题交叉验证在训练数据集中对模型进行内部验证,并使用三个独立的数据集对模型进行外部验证。训练数据集包括在参与者执行持续关注任务并休息时收集的fMRI数据(N = 25;)。验证包括的数据集:1)执行停止信号任务期间收集的数据休息时(N = 83,包括19位参加者)扫描前的哌醋甲酯; href="#R50" rid="R50" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_678063291"> Rosenberg等等,2016b ; f。al。,2014a),2)注意网络中收集的数据任务执行和休息(N = 41,Rosenberg等,付印中),和3)来自ADHD-200联盟的静息状态数据和ADHD症状严重程度(N = 113;)。楷模使用功能连接性度量的所有组合定义(皮尔逊的相关性,一致性和不一致性)和预测算法(线性和PLS回归)预测注意力能力,预测和观察到的注意度量之间的相关性高达0.9用于内部验证,0.6用于外部验证(所有p<0.05)。在任务数据上训练的模型优于在休息下训练的模型数据。皮尔逊的相关性和依从性特征通常显示出与不一致特征相比,数值优势较小,而PLS回归模型通常优于线性回归模型。总体来说,除了相关特征与线性模型()结合使用时,考虑符合功能和CPM的PLS回归。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号