首页> 美国卫生研究院文献>Frontiers in Physiology >Composite Biomarkers Derived from Micro-Electrode Array Measurements and Computer Simulations Improve the Classification of Drug-Induced Channel Block
【2h】

Composite Biomarkers Derived from Micro-Electrode Array Measurements and Computer Simulations Improve the Classification of Drug-Induced Channel Block

机译:微电极阵列测量和计算机模拟衍生的复合生物标记物改善了药物诱导的通道阻滞的分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Micro-Electrode Array (MEA) device enables high-throughput electrophysiology measurements that are less labor-intensive than patch-clamp based techniques. Combined with human-induced pluripotent stem cells cardiomyocytes (hiPSC-CM), it represents a new and promising paradigm for automated and accurate in vitro drug safety evaluation. In this article, the following question is addressed: which features of the MEA signals should be measured to better classify the effects of drugs? A framework for the classification of drugs using MEA measurements is proposed. The classification is based on the ion channels blockades induced by the drugs. It relies on an in silico electrophysiology model of the MEA, a feature selection algorithm and automatic classification tools. An in silico model of the MEA is developed and is used to generate synthetic measurements. An algorithm that extracts MEA measurements features designed to perform well in a classification context is described. These features are called composite biomarkers. A state-of-the-art machine learning program is used to carry out the classification of drugs using experimental MEA measurements. The experiments are carried out using five different drugs: mexiletine, flecainide, diltiazem, moxifloxacin, and dofetilide. We show that the composite biomarkers outperform the classical ones in different classification scenarios. We show that using both synthetic and experimental MEA measurements improves the robustness of the composite biomarkers and that the classification scores are increased.
机译:微电极阵列(MEA)设备可实现高通量电生理学测量,与基于膜片钳的技术相比,劳动强度较小。结合人类诱导的多能干细胞心肌细胞(hiPSC-CM),它代表了一种自动化且准确的体外药物安全性评估的新模式。在本文中,解决了以下问题:应该测量MEA信号的哪些特征,以更好地分类药物的作用?提出了使用MEA测量进行药物分类的框架。分类基于药物引起的离子通道封锁。它依赖于MEA的计算机电子电生理模型,功能选择算法和自动分类工具。开发了MEA的计算机模型,并用于生成综合测量值。描述了一种提取MEA测量特征的算法,该特征旨在在分类环境中表现良好。这些功能称为复合生物标记。使用最先进的机器学习程序通过实验MEA测量对药物进行分类。实验使用五种不同的药物进行:美西律,氟卡尼,地尔硫卓,莫西沙星和多非利特。我们表明,在不同的分类情况下,复合生物标记优于传统生物标记。我们表明,使用合成的和实验的MEA测量值都可以提高复合生物标志物的鲁棒性,并且分类得分会提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号