首页> 美国卫生研究院文献>other >Portable Brain-Computer Interface for the Intensive Care Unit Patient Communication Using Subject-Dependent SSVEP Identification
【2h】

Portable Brain-Computer Interface for the Intensive Care Unit Patient Communication Using Subject-Dependent SSVEP Identification

机译:重症监护病房患者通信的便携式脑机接口使用受试者相关的SSVEP识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A major predicament for Intensive Care Unit (ICU) patients is inconsistent and ineffective communication means. Patients rated most communication sessions as difficult and unsuccessful. This, in turn, can cause distress, unrecognized pain, anxiety, and fear. As such, we designed a portable BCI system for ICU communications (BCI4ICU) optimized to operate effectively in an ICU environment. The system utilizes a wearable EEG cap coupled with an Android app designed on a mobile device that serves as visual stimuli and data processing module. Furthermore, to overcome the challenges that BCI systems face today in real-world scenarios, we propose a novel subject-specific Gaussian Mixture Model- (GMM-) based training and adaptation algorithm. First, we incorporate subject-specific information in the training phase of the SSVEP identification model using GMM-based training and adaptation. We evaluate subject-specific models against other subjects. Subsequently, from the GMM discriminative scores, we generate the transformed vectors, which are passed to our predictive model. Finally, the adapted mixture mean scores of the subject-specific GMMs are utilized to generate the high-dimensional supervectors. Our experimental results demonstrate that the proposed system achieved 98.7% average identification accuracy, which is promising in order to provide effective and consistent communication for patients in the intensive care.
机译:重症监护病房(ICU)患者的主要困境是沟通手段不一致和无效。患者将大多数交流会议评为困难和不成功。反过来,这可能会导致困扰,无法识别的疼痛,焦虑和恐惧。因此,我们设计了一种用于ICU通信的便携式BCI系统(BCI4ICU),该系统经过优化可在ICU环境中有效运行。该系统使用可穿戴式EEG帽,并结合在移动设备上设计的Android应用程序,充当视觉刺激和数据处理模块。此外,为了克服BCI系统在现实世界中面临的挑战,我们提出了一种新颖的基于特定学科的高斯混合模型(GMM-)的训练和自适应算法。首先,我们使用基于GMM的训练和适应方法在SSVEP识别模型的训练阶段中纳入特定于主题的信息。我们针对其他主题评估特定于主题的模型。随后,根据GMM判别分数,我们生成转换后的向量,并将其传递给我们的预测模型。最后,利用受试者特定GMM的自适应混合平均得分来生成高维超向量。我们的实验结果表明,该系统达到了98.7%的平均识别准确率,这有望为重症监护患者提供有效且一致的沟通。

著录项

  • 期刊名称 other
  • 作者

    Omid Dehzangi; Muhamed Farooq;

  • 作者单位
  • 年(卷),期 -1(2018),-1
  • 年度 -1
  • 页码 9796238
  • 总页数 14
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号