首页> 美国卫生研究院文献>other >Quantitative Self-Assembly Prediction Yields Targeted Nanomedicines
【2h】

Quantitative Self-Assembly Prediction Yields Targeted Nanomedicines

机译:定量自组装预测产量靶向纳米药物。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. Until recently, these processes were generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system which is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultra-high drug loadings of up to 90%. Using quantitative structure-nanoparticle assembly prediction (QSNAP) calculations, we identified and validated electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables a computational design of nanomedicines based on quantitative models for drug payload selection.
机译:靶向纳米颗粒药物载体的开发通常需要涉及超分子自组装和化学修饰的复杂合成方案。直到最近,这些过程通常很难预测,执行和控制。我们在本文中描述了靶向药物递送系统,其基于前体分子的分子结构而被准确和定量地预测为自组装成纳米颗粒,所述前体分子是药物本身。这些药物借助硫酸吲哚花青素组装成具有高达90%的超高载药量的颗粒。使用定量结构-纳米粒子组装预测(QSNAP)计算,我们确定并验证了电拓扑分子描述符作为纳米组装和纳米粒子尺寸的高度预测指标。所得的纳米颗粒将激酶抑制剂选择性靶向表达caveolin-1的人结肠癌和本地肝癌模型,以产生惊人的治疗效果,同时避免了健康皮肤中pERK的抑制。该发现使得能够基于用于药物有效载荷选择的定量模型进行纳米药物的计算设计。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号