首页> 美国卫生研究院文献>Frontiers in Neuroscience >Decoding English Alphabet Letters Using EEG Phase Information
【2h】

Decoding English Alphabet Letters Using EEG Phase Information

机译:使用EEG相位信息解码英文字母

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Increasing evidence indicates that the phase pattern and power of the low frequency oscillations of brain electroencephalograms (EEG) contain significant information during the human cognition of sensory signals such as auditory and visual stimuli. Here, we investigate whether and how the letters of the alphabet can be directly decoded from EEG phase and power data. In addition, we investigate how different band oscillations contribute to the classification and determine the critical time periods. An English letter recognition task was assigned, and statistical analyses were conducted to decode the EEG signal corresponding to each letter visualized on a computer screen. We applied support vector machine (SVM) with gradient descent method to learn the potential features for classification. It was observed that the EEG phase signals have a higher decoding accuracy than the oscillation power information. Low-frequency theta and alpha oscillations have phase information with higher accuracy than do other bands. The decoding performance was best when the analysis period began from 180 to 380 ms after stimulus presentation, especially in the lateral occipital and posterior temporal scalp regions (PO7 and PO8). These results may provide a new approach for brain-computer interface techniques (BCI) and may deepen our understanding of EEG oscillations in cognition.
机译:越来越多的证据表明,在人类对诸如听觉和视觉刺激之类的感觉信号的认知过程中,脑电图(EEG)的低频振荡的相位模式和功率包含大量信息。在这里,我们研究是否可以从EEG相位和功率数据中直接解码字母以及如何将其解码。此外,我们研究了不同的频带振荡如何影响分类并确定关键时间段。分配了英文字母识别任务,并进行了统计分析以解码与在计算机屏幕上可视化的每个字母相对应的EEG信号。我们应用支持向量机(SVM)和梯度下降法来学习潜在的分类特征。已经观察到,EEG相位信号具有比振荡功率信息更高的解码精度。低频theta和alpha振荡具有比其他频段更高的相位信息。当分析周期从刺激出现后的180到380 ms开始时,尤其是在枕骨外侧和颞后部头皮区域(PO7和PO8)中,解码性能最佳。这些结果可能为脑计算机接口技术(BCI)提供一种新方法,并可能加深我们对认知中脑电图振荡的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号