首页> 美国卫生研究院文献>other >Convolutional Neural Networks for the Detection of Diseased Hearts Using CT Images and Left Atrium Patches
【2h】

Convolutional Neural Networks for the Detection of Diseased Hearts Using CT Images and Left Atrium Patches

机译:卷积神经网络使用CT图像和左心房斑块检测患病心脏

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cardiovascular disease is a leading cause of death in the United States. The identification of cardiac diseases on conventional three-dimensional (3D) CT can have many clinical applications. An automated method that can distinguish between healthy and diseased hearts could improve diagnostic speed and accuracy when the only modality available is conventional 3D CT. In this work, we proposed and implemented convolutional neural networks (CNNs) to identify diseased hears on CT images. Six patients with healthy hearts and six with previous cardiovascular disease events received chest CT. After the left atrium for each heart was segmented, 2D and 3D patches were created. A subset of the patches were then used to train separate convolutional neural networks using leave-one-out cross-validation of patient pairs. The results of the two neural networks were compared, with 3D patches producing the higher testing accuracy. The full list of 3D patches from the left atrium was then classified using the optimal 3D CNN model, and the receiver operating curves (ROCs) were produced. The final average area under the curve (AUC) from the ROC curves was 0.840 ± 0.065 and the average accuracy was 78.9% ± 5.9%. This demonstrates that the CNN-based method is capable of distinguishing healthy hearts from those with previous cardiovascular disease.
机译:在美国,心血管疾病是主要的死亡原因。在常规的三维(3D)CT上识别心脏病可以具有许多临床应用。当唯一可用的方式是常规3D CT时,可以区分健康心脏和患病心脏的自动化方法可以提高诊断速度和准确性。在这项工作中,我们提出并实现了卷积神经网络(CNN),以识别CT图像上的患病听觉。六名心脏健康的患者和六名先前有心血管疾病的患者接受了胸部CT检查。分割每个心脏的左心房后,创建2D和3D斑块。然后使用患者对的留一法交叉验证将补丁的子集用于训练单独的卷积神经网络。比较了两个神经网络的结果,并使用3D补丁产生了更高的测试精度。然后使用最佳3D CNN模型对来自左心房的3D斑块的完整列表进行分类,并生成接收器工作曲线(ROC)。 ROC曲线的曲线下最终平均面积(AUC)为0.840±0.065,平均准确度为78.9%±5.9%。这表明基于CNN的方法能够区分健康的心脏和先前患有心血管疾病的心脏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号