首页> 美国卫生研究院文献>other >INFANT BRAIN DEVELOPMENT PREDICTION WITH LATENT PARTIAL MULTI-VIEW REPRESENTATION LEARNING
【2h】

INFANT BRAIN DEVELOPMENT PREDICTION WITH LATENT PARTIAL MULTI-VIEW REPRESENTATION LEARNING

机译:局部偏向多视图表示学习的婴儿脑发育预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The early postnatal period witnesses rapid and dynamic brain development. Understanding the cognitive development patterns can help identify various disorders at early ages of life and is essential for the health and well-being of children. This inspires us to investigate the relation between cognitive ability and the cerebral cortex by exploiting brain images in a longitudinal study. Specifically, we aim to predict the infant brain development status based on the morphological features of the cerebral cortex. For this goal, we introduce a multi-view multi-task learning approach to dexterously explore complementary information from different time points and handle the missing data simultaneously. Specifically, we establish a novel model termed as Latent Partial Multi-view Representation Learning. The approach regards data of different time points as different views, and constructs a latent representation to capture the complementary underlying information from different and even incomplete time points. It uncovers the latent representation that can be jointly used to learn the prediction model. This formulation elegantly explores the complementarity, effectively reduces the redundancy of different views, and improves the accuracy of prediction. The minimization problem is solved by the Alternating Direction Method of Multipliers (ADMM). Experimental results on real data validate the proposed method.
机译:产后早期见证了大脑快速而动态的发育。了解认知发展模式可以帮助识别幼儿早期的各种疾病,对于儿童的健康和福祉至关重要。这激发了我们通过在纵向研究中利用大脑图像来研究认知能力与大脑皮层之间的关系。具体来说,我们旨在根据大脑皮层的形态特征预测婴儿的大脑发育状况。为此,我们引入了一种多视图多任务学习方法,以灵活地探索来自不同时间点的补充信息,并同时处理丢失的数据。具体来说,我们建立了一个称为潜在部分多视图表示学习的新颖模型。该方法将不同时间点的数据视为不同的视图,并构造一个潜在表示来捕获来自不同甚至不完整时间点的互补基础信息。它揭示了可以共同用于学习预测模型的潜在表示。这种表述优雅地探索了互补性,有效地减少了不同观点的重复,并提高了预测的准确性。最小化问题通过乘数交替方向法(ADMM)解决。真实数据的实验结果验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号