首页> 美国卫生研究院文献>other >Establishment of a Human iPSC- and Nanofiber-Based Microphysiological Blood–Brain Barrier System
【2h】

Establishment of a Human iPSC- and Nanofiber-Based Microphysiological Blood–Brain Barrier System

机译:基于人类iPSC和基于纳米纤维的微生理血脑屏障系统的建立

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The blood–brain barrier (BBB) is an active and complex diffusion barrier that separates the circulating blood from the brain and extracellular fluid, regulates nutrient transportation, and provides protection against various toxic compounds and pathogens. Creating an in vitro microphysiological BBB system, particularly with relevant human cell types, will significantly facilitate the research of neuropharmaceutical drug delivery, screening, and transport, as well as improve our understanding of pathologies that are due to BBB damage. Currently, most of the in vitro BBB models are generated by culturing rodent astrocytes and endothelial cells, using commercially available transwell membranes. Those membranes are made of plastic biopolymers that are nonbiodegradable, porous, and stiff. In addition, distinct from rodent astrocytes, human astrocytes possess unique cell complexity and physiology, which are among the few characteristics that differentiate human brains from rodent brains. In this study, we established a novel human BBB microphysiologocal system, consisting of a three-dimensionally printed holder with a electrospun poly(lactic-co-glycolic) acid (PLGA) nanofibrous mesh, a bilayer coculture of human astrocytes, and endothelial cells, derived from human induced pluripotent stem cells (hiPSCs), on the electrospun PLGA mesh. This human BBB model achieved significant barrier integrity with tight junction protein expression, an effective permeability to sodium fluorescein, and higher transendothelial electrical resistance (TEER) comparing to electrospun mesh-based counterparts. Moreover, the coculture of hiPSC-derived astrocytes and endothielial cells promoted the tight junction protein expression and the TEER value. We further verified the barrier functions of our BBB model with antibrain tumor drugs (paclitaxel and bortezomib) and a neurotoxic peptide (amyloid β 1–42). The human microphysiological system generated in this study will potentially provide a new, powerful tool for research on human BBB physiology and pathology.
机译:血脑屏障(BBB)是一种活跃而复杂的扩散屏障,可将循环血液与大脑和细胞外液分开,调节营养物质的运输,并提供针对各种有毒化合物和病原体的保护。创建一个体外微生理学BBB系统,尤其是与相关人类细胞类型相关的BBB系统,将极大地促进神经药物给药,筛选和运输的研究,并增进我们对BBB损伤所致病理的了解。当前,大多数体外BBB模型是通过使用可商购的transwell膜培养啮齿动物星形胶质细胞和内皮细胞而产生的。这些膜由不可生物降解,多孔和坚硬的塑料生物聚合物制成。此外,与啮齿动物星形胶质细胞不同,人类星形胶质细胞具有独特的细胞复杂性和生理学,这是区分人脑与啮齿类动物大脑的少数特征之一。在这项研究中,我们建立了一种新型的人体BBB微生理学系统,该系统由三维印刷的支架和电纺聚乳酸-乙醇酸(PLGA)纳米纤维网,人类星形胶质细胞和内皮细胞的双层共培养物组成,在电纺PLGA网格上从人诱导的多能干细胞(hiPSC)衍生而来。与基于静电纺网的同类产品相比,该人类BBB模型具有紧密的连接蛋白表达,对荧光素钠有效的渗透性和更高的跨内皮电阻(TEER),实现了显着的屏障完整性。此外,hiPSC衍生的星形胶质细胞和内皮细胞的共培养促进了紧密连接蛋白的表达和TEER值。我们进一步用抗脑肿瘤药物(紫杉醇和硼替佐米)和神经毒性肽(淀粉样蛋白β1–42)验证了BBB模型的屏障功能。这项研究中产生的人类微生理系统将潜在地为研究人类BBB生理学和病理学提供一个强大的新工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号