...
首页> 外文期刊>ACS applied materials & interfaces >Establishment of a Human iPSC- and Nanofiber-Based Microphysiological Blood-Brain Barrier System
【24h】

Establishment of a Human iPSC- and Nanofiber-Based Microphysiological Blood-Brain Barrier System

机译:建立人类IPSC和基于纳米纤维的微生物生物学血脑屏障系统

获取原文
获取原文并翻译 | 示例
           

摘要

The blood-brain barrier (BBB) is an active and complex diffusion barrier that separates the circulating blood from the brain and extracellular fluid, regulates nutrient transportation, and provides protection against various toxic compounds and pathogens. Creating an in vitro microphysiological BBB system, particularly with relevant human cell types, will significantly facilitate the research of neuropharmaceutical drug delivery, screening, and transport, as well as improve our understanding of pathologies that are due to BBB damage. Currently, most of the in vitro BBB models are generated by culturing rodent astrocytes and endothelial cells, using commercially available transwell membranes. Those membranes are made of plastic biopolymers that are nonbiodegradable, porous, and stiff. In addition, distinct from rodent astrocytes, human astrocytes possess unique cell complexity and physiology, which are among the few characteristics that differentiate human brains from rodent brains. In this study, we established a novel human BBB microphysiologocal system, consisting of a three-dimensionally printed holder with a electrospun poly(lactic-co-glycolic) acid (PLGA) nanofibrous mesh, a bilayer coculture of human astrocytes, and endothelial cells, derived from human induced pluripotent stem cells (hiPSCs), on the electrospun PLGA mesh. This human BBB model achieved significant barrier integrity with tight junction protein expression, an effective permeability to sodium fluorescein, and higher transendothelial electrical resistance (TEER) comparing to electrospun mesh-based counterparts. Moreover, the coculture of hiPSC-derived astrocytes and endothielial cells promoted the tight junction protein expression and the TEER value. We further verified the barrier functions of our BBB model with antibrain tumor drugs (paclitaxel and bortezomib) and a neurotoxic peptide (amyloid beta 1-42). The human microphysiological system generated in this study will potentially provide a new, powerful tool for research on human BBB physiology and pathology.
机译:血脑屏障(BBB)是一种活性且复杂的扩散屏障,使循环血液与脑和细胞外液分离,调节营养运输,并提供针对各种有毒化合物和病原体的保护。产生体外微生物学BBB系统,特别是在相关的人体细胞类型中,将显着促进神经制药药物递送,筛查和运输的研究,以及改善我们对由于BBB损伤导致的病理学的理解。目前,使用市售的Transwell膜来培养啮齿动物星形胶质细胞和内皮细胞来产生大多数体外BBB模型。那些膜由塑料生物聚合物制成,这些塑料生物聚合物是非可解离的,多孔的和僵硬的。此外,不同于啮齿动物的星形胶质细胞,人的星形胶质细胞具有独特的细胞复杂性和生理学,这些特征是区分从啮齿动物大脑中的人类大脑的少数特征。在这项研究中,我们建立了一种新型人BBB微生物学系统,由具有静电梭聚(乳酸 - 共乙醇酸)酸(PLGA)纳米纤维网,人星形胶质细胞的双层共培养物和内皮细胞的三维印刷支架组成。衍生自人诱导的多能干细胞(HIPSC),在ElectromeTUS PLGA网上。该人BBB模型具有较小的结蛋白表达,与荧光素钠的有效渗透性,与基于Electurpul网格的对应物相比,具有较小的结蛋白表达,具有较高的经术间电阻(Teer)的屏障完整性。此外,肝源性星形胶质细胞和内皮细胞的共培养促进了紧密的结蛋白表达和转型价值。我们进一步验证了我们的BBB模型与抗刺肿瘤药物(紫杉醇和硼藻)和神经毒性肽(淀粉样蛋白β1-42)的阻隔功能。本研究中产生的人类微生物生物学系统将可能为人体BBB生理和病理学研究提供新的强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号