首页> 美国卫生研究院文献>other >The Soliton and the Action Potential – Primary Elements Underlying Sentience
【2h】

The Soliton and the Action Potential – Primary Elements Underlying Sentience

机译:孤子和动作电位–构成句子的基本要素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

At present the neurological basis of sentience is poorly understood and this problem is exacerbated by only a partial knowledge of how one of the primary elements of sentience, the action potential, actually works. This has consequences for our understanding of how communication within the brain and in artificial brain neural networks (BNNs). Reverse engineering models of brain activity assume processing works like a conventional binary computer and neglects speed of cognition, latencies, error in nerve conduction and the true dynamic structure of neural networks in the brain. Any model of nerve conduction that claims inspiration from nature must include these prerequisite parameters, but current western computer modeling of artificial BNNs assumes that the action potential is binary and binary mathematics has been assumed by force of popular acceptance to mediate computation in the brain. Here we present evidence that the action potential is a temporal compound ternary structure, described as the computational action potential (CAP). The CAP contains the refractory period, an analog third phase capable of phase-ternary computation via colliding action potentials. This would best fit a realistic BNN and provides a plausible mechanism to explain transmission, in preference to Cable Theory. The action potential pulse (APPulse), is made up of the action potential combined with a coupled synchronized soliton pressure pulse in the cell membrane. We describe a model of an ion channel in a membrane where a soliton deforms the channel sufficiently to destroy the electrostatic insulation thereby instigating a mechanical contraction across the membrane by electrostatic forces. Such a contraction has the effect of redistributing the force lengthways thereby increasing the volume of the ion channel in the membrane. Na ions, once attracted to the interior, balance the forces and the channel reforms to its original shape. A refractory period then occurs until the Na ions diffuse from the adjacent interior space. Finally, a computational model of the action potential (the CAP) is proposed with single action potentials significantly including the refractory period as a computational element capable of computation between colliding action potentials.
机译:目前,对感觉的神经学基础知之甚少,并且仅部分了解感觉的主要要素之一,动作电位是如何工作的,这一问题就变得更加严重。这对我们对大脑内部和人工大脑神经网络(BNN)中的通信方式的理解产生了影响。大脑活动的逆向工程模型假定处理过程像常规的二进制计算机一样,而忽略了认知速度,潜伏期,神经传导错误以及大脑中神经网络的真实动态结构。任何从自然界中汲取灵感的神经传导模型都必须包含这些先决条件参数,但是当前的西方人工BNN计算机建模假设动作电位是二进制,并且二进制数学已经被大众接受以介导大脑中的计算。在这里,我们提供证据表明动作电位是时间复合三元结构,称为计算动作电位(CAP)。 CAP包含不应期,这是一个模拟的第三相,能够通过碰撞动作电位进行三元计算。优先于电缆理论,这将最适合现实的BNN,并提供一种解释传输的合理机制。动作电位脉冲(APPulse)由动作电位与细胞膜中耦合的同步孤子压力脉冲组合而成。我们描述了膜中离子通道的模型,其中孤子使通道充分变形以破坏静电绝缘,从而通过静电力促进跨膜的机械收缩。这种收缩具有沿纵向重新分配力的作用,从而增加了膜中离子通道的体积。钠离子一旦被吸引到内部,便会平衡力,并使通道重新形成其原始形状。然后发生一个不应期,直到Na离子从相邻的内部空间扩散出来。最后,提出了一种动作电位(CAP)的计算模型,其中单个动作电位显着包括不应期,作为能够在碰撞动作电位之间进行计算的计算元素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号