首页> 美国卫生研究院文献>Journal of Healthcare Engineering >Deep Learning- and Transfer Learning-Based Super Resolution Reconstruction from Single Medical Image
【2h】

Deep Learning- and Transfer Learning-Based Super Resolution Reconstruction from Single Medical Image

机译:基于单个医学图像的深度学习和基于转移学习的超分辨率重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Medical images play an important role in medical diagnosis and research. In this paper, a transfer learning- and deep learning-based super resolution reconstruction method is introduced. The proposed method contains one bicubic interpolation template layer and two convolutional layers. The bicubic interpolation template layer is prefixed by mathematics deduction, and two convolutional layers learn from training samples. For saving training medical images, a SIFT feature-based transfer learning method is proposed. Not only can medical images be used to train the proposed method, but also other types of images can be added into training dataset selectively. In empirical experiments, results of eight distinctive medical images show improvement of image quality and time reduction. Further, the proposed method also produces slightly sharper edges than other deep learning approaches in less time and it is projected that the hybrid architecture of prefixed template layer and unfixed hidden layers has potentials in other applications.
机译:医学图像在医学诊断和研究中起着重要作用。本文介绍了一种基于转移学习和深度学习的超分辨率重建方法。所提出的方法包含一个双三次插值模板层和两个卷积层。双三次插值模板层以数学推导作为前缀,两个卷积层从训练样本中学习。为了保存训练医学图像,提出了一种基于SIFT特征的转移学习方法。不仅可以使用医学图像来训练所提出的方法,而且可以将其他类型的图像选择性地添加到训练数据集中。在经验实验中,八张独特的医学图像的结果显示出图像质量的提高和时间的减少。此外,与其他深度学习方法相比,所提出的方法还可以在更短的时间内产生更锐利的边缘,并且预计前缀模板层和未固定隐藏层的混合体系结构在其他应用中也具有潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号