首页> 美国卫生研究院文献>other >Deep Learning for Fast and Spatially-Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF)
【2h】

Deep Learning for Fast and Spatially-Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF)

机译:从磁共振指纹(MRF)中高度欠采样的数据进行深度和空间受限组织定量的深度学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetic resonance fingerprinting (MRF) is a novel quantitative imaging technique that allows simultaneous measurements of multiple important tissue properties in human body, e.g., T1 and T2 relaxation times. While MRF has demonstrated better scan efficiency as compared to conventional quantitative imaging techniques, further acceleration is desired, especially for certain subjects such as infants and young children. However, the conventional MRF framework only uses a simple template matching algorithm to quantify tissue properties, without considering the underlying spatial association among pixels in MRF signals. In this work, we aim to accelerate MRF acquisition by developing a new post-processing method that allows accurate quantification of tissue properties with fewer sampling data. Moreover, to improve the accuracy in quantification, the MRF signals from multiple surrounding pixels are used together to better estimate tissue properties at the central target pixel, which was simply done with the signal only from the target pixel in the original template matching method. In particular, a deep learning model, i.e., U-Net, is used to learn the mapping from the MRF signal evolutions to the tissue property map. To further reduce the network size of U-Net, principal component analysis (PCA) is used to reduce the dimensionality of the input signals. Based on in vivo brain data, our method can achieve accurate quantification for both T1 and T2 by using only 25% time points, which are four times of acceleration in data acquisition compared to the original template matching method.
机译:磁共振指纹图谱(MRF)是一种新颖的定量成像技术,可以同时测量人体中多个重要的组织特性,例如T1和T2弛豫时间。尽管与传统的定量成像技术相比,MRF已显示出更好的扫描效率,但仍需要进一步加速,尤其是对于某些对象,例如婴儿和幼儿。然而,常规的MRF框架仅使用简单的模板匹配算法来量化组织性质,而不考虑MRF信号中的像素之间的潜在空间关联。在这项工作中,我们旨在通过开发一种新的后处理方法来加速MRF采集,该方法可以使用更少的采样数据来准确定量组织特性。此外,为了提高量化的准确性,可以将来自多个周围像素的MRF信号一起使用,以更好地估计中心目标像素处的组织特性,这在原始模板匹配方法中仅使用仅来自目标像素的信号即可完成。特别地,深度学习模型,即U-Net,被用来学习从MRF信号演变到组织特性图的映射。为了进一步减小U-Net的网络大小,使用主成分分析(PCA)来减小输入信号的维数。基于体内大脑数据,我们的方法仅使用25%的时间点即可实现T1和T2的准确定量,这是原始模板匹配方法的四倍于数据采集的加速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号