首页> 外文会议>International Workshop on Machine Learning in Medical Imaging >Deep Learning for Fast and Spatially-Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF)
【24h】

Deep Learning for Fast and Spatially-Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF)

机译:深度学习,用于从磁共振指纹(MRF)中的高度下采样数据的快速和空间受约束的组织量化

获取原文

摘要

Magnetic resonance fingerprinting (MRF) is a novel quantitative imaging technique that allows simultaneous measurements of multiple important tissue properties in human body, e.g., T1 and T2 relaxation times. While MRF has demonstrated better scan efficiency as compared to conventional quantitative imaging techniques, further acceleration is desired, especially for certain sub-jects such as infants and young children. However, the conventional MRF framework only uses a simple template matching algorithm to quantify tissue properties, without considering the underlying spatial association among pixels in MRF signals. In this work, we aim to accelerate MRF acquisition by developing a new post-processing method that allows accurate quantification of tissue properties with fewer sampling data. Moreover, to improve the accuracy in quantification, the MRF signals from multiple surrounding pixels are used together to better estimate tissue properties at the central target pixel, which was simply done with the signal only from the target pixel in the original template matching method. In particular, a deep learning model, i.e., U-Net, is used to learn the mapping from the MRF signal evolutions to the tissue property map. To further reduce the network size of U-Net, principal component analysis (PCA) is used to reduce the dimensionality of the input signals. Based on in vivo brain data, our method can achieve accurate quantification for both T1 and T2 by using only 25% time points, which are four times of acceleration in data acquisition compared to the original template matching method.
机译:磁共振指纹(MRF)是一种新的定量成像技术,允许同时测量人体中的多重重要组织特性,例如T1和T2松弛时间。虽然与传统的定量成像技术相比,MRF已经证明了更好的扫描效率,但需要进一步加速,特别是对于某些子系统,例如婴儿和幼儿。然而,传统的MRF框架仅使用简单的模板匹配算法来量化组织属性,而不考虑MRF信号中的像素之间的底层空间关联。在这项工作中,我们的目标是通过开发新的后处理方法加速MRF采集,该方法允许准确地定量具有较少的采样数据的组织特性。此外,为了提高定量的精度,来自多个周围像素的MRF信号一起使用,以更好地在中央目标像素处估计组织特性,其简单地仅从原始模板匹配方法中的目标像素中完成信号。特别地,使用深度学习模型,即U-Net,用于从MRF信号演进到组织属性图中的映射。为了进一步减少U-Net的网络大小,主要成分分析(PCA)用于降低输入信号的维度。基于体内脑数据,我们的方法可以通过仅使用25%的时间点来实现T1和T2的准确定量,与原始模板匹配方法相比,数据采集中的四次加速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号