...
首页> 外文期刊>IEEE Transactions on Medical Imaging >Deep Learning for Fast and Spatially Constrained Tissue Quantification From Highly Accelerated Data in Magnetic Resonance Fingerprinting
【24h】

Deep Learning for Fast and Spatially Constrained Tissue Quantification From Highly Accelerated Data in Magnetic Resonance Fingerprinting

机译:从磁共振指纹中的高度加速数据中进行快速且空间受限的组织量化的深度学习

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetic resonance fingerprinting (MRF) is a quantitative imaging technique that can simultaneously measure multiple important tissue properties of human body. Although MRF has demonstrated improved scan efficiency as compared to conventional techniques, further acceleration is still desired for translation into routine clinical practice. The purpose of this paper is to accelerate MRF acquisition by developing a new tissue quantification method for MRF that allows accurate quantification with fewer sampling data. Most of the existing approaches use the MRF signal evolution at each individual pixel to estimate tissue properties, without considering the spatial association among neighboring pixels. In this paper, we propose a spatially constrained quantification method that uses the signals at multiple neighboring pixels to better estimate tissue properties at the central pixel. Specifically, we design a unique two-step deep learning model that learns the mapping from the observed signals to the desired properties for tissue quantification, i.e.: 1) with a feature extraction module for reducing the dimension of signals by extracting a low-dimensional feature vector from the high-dimensional signal evolution and 2) a spatially constrained quantification module for exploiting the spatial information from the extracted feature maps to generate the final tissue property map. A corresponding two-step training strategy is developed for network training. The proposed method is tested on highly undersampled MRF data acquired from human brains. Experimental results demonstrate that our method can achieve accurate quantification for T1 and T2 relaxation times by using only 1/4 time points of the original sequence (i.e., four times of acceleration for MRF acquisition).
机译:磁共振指纹(MRF)是一种定量成像技术,可以同时测量人体的多个重要组织特性。尽管与常规技术相比,MRF已显示出更高的扫描效率,但仍需要进一步加速以转化为常规临床实践。本文的目的是通过开发一种新的MRF组织定量方法来加速MRF采集,该方法可使用较少的采样数据进行精确定量。大多数现有方法都在每个单独的像素处使用MRF信号演化来估计组织属性,而无需考虑相邻像素之间的空间关联。在本文中,我们提出了一种空间受限的量化方法,该方法使用多个相邻像素处的信号来更好地估计中心像素处的组织特性。具体来说,我们设计了一个独特的两步深度学习模型,该模型学习从观察到的信号到组织量化所需属性的映射,即:1)使用特征提取模块通过提取低维特征来减小信号的维数高维信号演化的向量和2)空间受限的量化模块,用于利用从提取的特征图中提取的空间信息来生成最终的组织特性图。针对网络培训开发了相应的两步培训策略。对从人脑获取的高度采样不足的MRF数据进行了测试。实验结果表明,我们的方法仅使用原始序列的1/4个时间点即可获得T1和T2弛豫时间的准确量化(即,对于MRF采集,加速度是其四倍)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号