首页> 美国卫生研究院文献>ACS Omega >Amorphous Carbon Chips Li-Ion Battery Anodes Producedthrough Polyethylene Waste Upcycling
【2h】

Amorphous Carbon Chips Li-Ion Battery Anodes Producedthrough Polyethylene Waste Upcycling

机译:生产出非晶碳芯片锂离子电池阳极通过聚乙烯废物回收

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Remediation process produces high-value functional material from low-cost or valueless waste feedstock. Current research demonstrates an innovative solvothermal approach to effectively react sulfuric acid on polyethylene (PE) chains, modifying the PE at a moderate temperature. In this process, the polymer undergoes a cross-linking step above 120 °C, whereas above 500 °C, it transforms into turbostratic carbon structures. Scanning electron micrographs confirmed the free-standing carbon sheet architecture. Raman spectroscopy and X-ray diffraction verified the amorphous/disordered sp2/sp3 hybrid carbon structure in the produced carbons. A high Brunauer–Emmett–Teller surface area of 752.3 and 673.5 m2/g for low-density PE-derived carbon (LDPE-C) and high-density PE-derived carbon (HDPE-C), respectively, was recorded. Thermogravimetric analysis analysis established a total mass retention of 50 and 46% for LDPE and HDPE, respectively, from sulfonated materials. Li-ion battery composite anode comprising LDPE-C and HDPE-C, with a binder and a carbon additive (vs lithium), produced230 and 350 mA h/g specific capacities for LDPE-C and HDPE-C, respectively,when cycled at room temperature at C/5 rate. Elevated temperature(50 °C) battery cycling produced 290 and 440 mA h/g specificcapacities for LDPE-C and HDPE-C, respectively, at C/5 rate. On thebasis of the literature survey, this is the first report, which demonstratesthat a solvothermal sulfonation process followed by thermal treatmentsuccessfully converts waste LDPE and HDPE plastic bags to functionalenergy-storing carbons.
机译:修复过程从低成本或无价的废料中产生高价值的功能材料。当前的研究表明,一种创新的溶剂热方法可以有效地使硫酸在聚乙烯(PE)链上反应,并在中等温度下对PE进行改性。在此过程中,聚合物在高于120°C的温度下经历交联步骤,而在高于500°C的温度下,它转变为涡轮层碳结构。扫描电子显微照片证实了独立式碳片结构。拉曼光谱和X射线衍射证实了所产生的碳中无定形/无序的sp 2 / sp 3 杂化碳结构。低密度PE衍生碳(LDPE-C)和高密度PE衍生碳(HDPE-C)的Brunauer-Emmett-Teller高表面积为752.3和673.5 m 2 / g分别被记录。热重分析分析表明,磺化材料的LDPE和HDPE的总质量保留率分别为50%和46%。生产了包含LDPE-C和HDPE-C以及粘合剂和碳添加剂(相对于锂)的锂离子电池复合阳极LDPE-C和HDPE-C的比容量分别为230和350 mA h / g,在室温下以C / 5速率循环时。温度升高(50°C)电池循环产生290和440 mA h / g的比值LDPE-C和HDPE-C的容量分别为C / 5速率。在是文献调查的基础,这是第一份报告溶剂热磺化工艺,然后进行热处理成功地将废弃的LDPE和HDPE塑料袋转化为功能性储能碳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号