首页> 美国卫生研究院文献>other >Langevin equations from experimental data: The case of rotational diffusion in granular media
【2h】

Langevin equations from experimental data: The case of rotational diffusion in granular media

机译:来自实验数据的Langevin方程:颗粒介质中旋转扩散的情况

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A model has two main aims: predicting the behavior of a physical system and understanding its nature, that is how it works, at some desired level of abstraction. A promising recent approach to model building consists in deriving a Langevin-type stochastic equation from a time series of empirical data. Even if the protocol is based upon the introduction of drift and diffusion terms in stochastic differential equations, its implementation involves subtle conceptual problems and, most importantly, requires some prior theoretical knowledge about the system. Here we apply this approach to the data obtained in a rotational granular diffusion experiment, showing the power of this method and the theoretical issues behind its limits. A crucial point emerged in the dense liquid regime, where the data reveal a complex multiscale scenario with at least one fast and one slow variable. Identifying the latter is a major problem within the Langevin derivation procedure and led us to introduce innovative ideas for its solution.
机译:模型有两个主要目标:预测物理系统的行为并了解其本质,并以某种所需的抽象水平对其进行工作。最近的一种有前途的建模方法是从经验数据的时间序列中得出Langevin型随机方程。即使该协议基于随机微分方程中的漂移和扩散项的引入,其实现也涉及细微的概念性问题,最重要的是,需要有关该系统的一些先验理论知识。在这里,我们将这种方法应用于在旋转颗粒扩散实验中获得的数据,显示了该方法的强大功能以及其局限性背后的理论问题。稠密的液体状态出现了一个关键点,那里的数据揭示了一个复杂的多尺度情景,至少有一个快变量和一个慢变量。识别后者是Langevin推导过程中的一个主要问题,使我们引入了解决方案的创新思想。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号